CVE-2022-41900 (GCVE-0-2022-41900)

Vulnerability from cvelistv5 – Published: 2022-11-18 00:00 – Updated: 2025-04-22 16:03
VLAI?
Title
FractionalMaxPool and FractionalAVGPool heap out-of-bounds acess in Tensorflow
Summary
TensorFlow is an open source platform for machine learning. The security vulnerability results in FractionalMax(AVG)Pool with illegal pooling_ratio. Attackers using Tensorflow can exploit the vulnerability. They can access heap memory which is not in the control of user, leading to a crash or remote code execution. We have patched the issue in GitHub commit 216525144ee7c910296f5b05d214ca1327c9ce48. The fix will be included in TensorFlow 2.11.0. We will also cherry pick this commit on TensorFlow 2.10.1.
CWE
Assigner
Impacted products
Vendor Product Version
tensorflow tensorflow Affected: >= 2.10.0, < 2.10.1
Affected: >= 2.9.0, < 2.9.3
Affected: < 2.8.4
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T12:56:38.345Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xvwp-h6jv-7472"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/216525144ee7c910296f5b05d214ca1327c9ce48"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-41900",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "total"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:40:35.291563Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T16:03:33.028Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.10.0, \u003c 2.10.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.8.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. The security vulnerability results in FractionalMax(AVG)Pool with illegal pooling_ratio. Attackers using Tensorflow can exploit the vulnerability. They can access heap memory which is not in the control of user, leading to a crash or remote code execution. We have patched the issue in GitHub commit 216525144ee7c910296f5b05d214ca1327c9ce48. The fix will be included in TensorFlow 2.11.0. We will also cherry pick this commit on TensorFlow 2.10.1."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 7.1,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "REQUIRED",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-787",
              "description": "CWE-787: Out-of-bounds Write",
              "lang": "en",
              "type": "CWE"
            }
          ]
        },
        {
          "descriptions": [
            {
              "cweId": "CWE-125",
              "description": "CWE-125: Out-of-bounds Read",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-11-18T00:00:00.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xvwp-h6jv-7472"
        },
        {
          "url": "https://github.com/tensorflow/tensorflow/commit/216525144ee7c910296f5b05d214ca1327c9ce48"
        }
      ],
      "source": {
        "advisory": "GHSA-xvwp-h6jv-7472",
        "discovery": "UNKNOWN"
      },
      "title": "FractionalMaxPool and FractionalAVGPool heap out-of-bounds acess in Tensorflow"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-41900",
    "datePublished": "2022-11-18T00:00:00.000Z",
    "dateReserved": "2022-09-30T00:00:00.000Z",
    "dateUpdated": "2025-04-22T16:03:33.028Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1",
  "vulnerability-lookup:meta": {
    "nvd": "{\"cve\":{\"id\":\"CVE-2022-41900\",\"sourceIdentifier\":\"security-advisories@github.com\",\"published\":\"2022-11-18T22:15:20.273\",\"lastModified\":\"2024-11-21T07:24:01.587\",\"vulnStatus\":\"Modified\",\"cveTags\":[],\"descriptions\":[{\"lang\":\"en\",\"value\":\"TensorFlow is an open source platform for machine learning. The security vulnerability results in FractionalMax(AVG)Pool with illegal pooling_ratio. Attackers using Tensorflow can exploit the vulnerability. They can access heap memory which is not in the control of user, leading to a crash or remote code execution. We have patched the issue in GitHub commit 216525144ee7c910296f5b05d214ca1327c9ce48. The fix will be included in TensorFlow 2.11.0. We will also cherry pick this commit on TensorFlow 2.10.1.\"},{\"lang\":\"es\",\"value\":\"TensorFlow es una plataforma de c\u00f3digo abierto para aprendizaje autom\u00e1tico. La vulnerabilidad de seguridad da como resultado un grupo FractionalMax(AVG) con una relaci\u00f3n de agrupaci\u00f3n ilegal. Los atacantes que utilizan Tensorflow pueden aprovechar la vulnerabilidad. Pueden acceder a la memoria del mont\u00f3n que no est\u00e1 bajo el control del usuario, lo que provoca un bloqueo o la ejecuci\u00f3n remota de c\u00f3digo. Hemos solucionado el problema en el commit de GitHub 216525144ee7c910296f5b05d214ca1327c9ce48. La soluci\u00f3n se incluir\u00e1 en TensorFlow 2.11.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow 2.10.1.\"}],\"metrics\":{\"cvssMetricV31\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Secondary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:H/I:H/A:H\",\"baseScore\":7.1,\"baseSeverity\":\"HIGH\",\"attackVector\":\"NETWORK\",\"attackComplexity\":\"HIGH\",\"privilegesRequired\":\"LOW\",\"userInteraction\":\"REQUIRED\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"HIGH\",\"integrityImpact\":\"HIGH\",\"availabilityImpact\":\"HIGH\"},\"exploitabilityScore\":1.2,\"impactScore\":5.9},{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H\",\"baseScore\":9.8,\"baseSeverity\":\"CRITICAL\",\"attackVector\":\"NETWORK\",\"attackComplexity\":\"LOW\",\"privilegesRequired\":\"NONE\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"HIGH\",\"integrityImpact\":\"HIGH\",\"availabilityImpact\":\"HIGH\"},\"exploitabilityScore\":3.9,\"impactScore\":5.9}]},\"weaknesses\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Secondary\",\"description\":[{\"lang\":\"en\",\"value\":\"CWE-125\"},{\"lang\":\"en\",\"value\":\"CWE-787\"}]}],\"configurations\":[{\"nodes\":[{\"operator\":\"OR\",\"negate\":false,\"cpeMatch\":[{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionEndExcluding\":\"2.8.4\",\"matchCriteriaId\":\"A694EEE1-BFB9-4E6C-B275-02DC2731961C\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.9.0\",\"versionEndExcluding\":\"2.9.3\",\"matchCriteriaId\":\"9057B403-719C-4F10-BAB6-67F84786A89E\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:2.10.0:*:*:*:*:*:*:*\",\"matchCriteriaId\":\"6AE6CFC4-0232-4E1C-960D-268C87788735\"}]}]}],\"references\":[{\"url\":\"https://github.com/tensorflow/tensorflow/commit/216525144ee7c910296f5b05d214ca1327c9ce48\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xvwp-h6jv-7472\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Exploit\",\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/commit/216525144ee7c910296f5b05d214ca1327c9ce48\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xvwp-h6jv-7472\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Exploit\",\"Patch\",\"Third Party Advisory\"]}]}}"
  }
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or observed by the user.
  • Confirmed: The vulnerability has been validated from an analyst's perspective.
  • Published Proof of Concept: A public proof of concept is available for this vulnerability.
  • Exploited: The vulnerability was observed as exploited by the user who reported the sighting.
  • Patched: The vulnerability was observed as successfully patched by the user who reported the sighting.
  • Not exploited: The vulnerability was not observed as exploited by the user who reported the sighting.
  • Not confirmed: The user expressed doubt about the validity of the vulnerability.
  • Not patched: The vulnerability was not observed as successfully patched by the user who reported the sighting.


Loading…

Detection rules are retrieved from Rulezet.

Loading…

Loading…