Search criteria

108 vulnerabilities found for MLflow by lfprojects

CVE-2025-11201 (GCVE-0-2025-11201)

Vulnerability from nvd – Published: 2025-10-29 19:37 – Updated: 2025-10-31 03:55
VLAI?
Title
MLflow Tracking Server Model Creation Directory Traversal Remote Code Execution Vulnerability
Summary
MLflow Tracking Server Model Creation Directory Traversal Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of MLflow Tracking Server. Authentication is not required to exploit this vulnerability. The specific flaw exists within the handling of model file paths. The issue results from the lack of proper validation of a user-supplied path prior to using it in file operations. An attacker can leverage this vulnerability to execute code in the context of the service account. Was ZDI-CAN-26921.
CWE
  • CWE-22 - Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')
Assigner
zdi
Impacted products
Vendor Product Version
MLflow MLflow Affected: 2.21.3
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2025-11201",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "total"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-10-30T00:00:00+00:00",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-10-31T03:55:31.166Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "defaultStatus": "unknown",
          "product": "MLflow",
          "vendor": "MLflow",
          "versions": [
            {
              "status": "affected",
              "version": "2.21.3"
            }
          ]
        }
      ],
      "dateAssigned": "2025-09-30T20:34:16.612Z",
      "datePublic": "2025-10-03T23:25:23.863Z",
      "descriptions": [
        {
          "lang": "en",
          "value": "MLflow Tracking Server Model Creation Directory Traversal Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of MLflow Tracking Server. Authentication is not required to exploit this vulnerability.\n\nThe specific flaw exists within the handling of model file paths. The issue results from the lack of proper validation of a user-supplied path prior to using it in file operations. An attacker can leverage this vulnerability to execute code in the context of the service account. Was ZDI-CAN-26921."
        }
      ],
      "metrics": [
        {
          "cvssV3_0": {
            "baseScore": 8.1,
            "baseSeverity": "HIGH",
            "vectorString": "CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.0"
          },
          "format": "CVSS"
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-22",
              "description": "CWE-22: Improper Limitation of a Pathname to a Restricted Directory (\u0027Path Traversal\u0027)",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2025-10-29T19:37:10.690Z",
        "orgId": "99f1926a-a320-47d8-bbb5-42feb611262e",
        "shortName": "zdi"
      },
      "references": [
        {
          "name": "ZDI-25-931",
          "tags": [
            "x_research-advisory"
          ],
          "url": "https://www.zerodayinitiative.com/advisories/ZDI-25-931/"
        },
        {
          "name": "vendor-provided URL",
          "tags": [
            "vendor-advisory"
          ],
          "url": "https://github.com/B-Step62/mlflow/commit/2e02bc7bb70df243e6eb792689d9b8eba0013161"
        }
      ],
      "source": {
        "lang": "en",
        "value": "Mas Fadilullah dzaki"
      },
      "title": "MLflow Tracking Server Model Creation Directory Traversal Remote Code Execution Vulnerability"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "99f1926a-a320-47d8-bbb5-42feb611262e",
    "assignerShortName": "zdi",
    "cveId": "CVE-2025-11201",
    "datePublished": "2025-10-29T19:37:10.690Z",
    "dateReserved": "2025-09-30T20:34:16.557Z",
    "dateUpdated": "2025-10-31T03:55:31.166Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.2"
}

CVE-2025-11200 (GCVE-0-2025-11200)

Vulnerability from nvd – Published: 2025-10-29 19:42 – Updated: 2025-10-31 03:55
VLAI?
Title
MLflow Weak Password Requirements Authentication Bypass Vulnerability
Summary
MLflow Weak Password Requirements Authentication Bypass Vulnerability. This vulnerability allows remote attackers to bypass authentication on affected installations of MLflow. Authentication is not required to exploit this vulnerability. The specific flaw exists within the handling of passwords. The issue results from weak password requirements. An attacker can leverage this vulnerability to bypass authentication on the system. Was ZDI-CAN-26916.
CWE
  • CWE-521 - Weak Password Requirements
Assigner
zdi
Impacted products
Vendor Product Version
MLflow MLflow Affected: 2.21.0
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2025-11200",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "total"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-10-30T00:00:00+00:00",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-10-31T03:55:31.971Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "defaultStatus": "unknown",
          "product": "MLflow",
          "vendor": "MLflow",
          "versions": [
            {
              "status": "affected",
              "version": "2.21.0"
            }
          ]
        }
      ],
      "dateAssigned": "2025-09-30T20:33:50.659Z",
      "datePublic": "2025-10-03T23:27:16.937Z",
      "descriptions": [
        {
          "lang": "en",
          "value": "MLflow Weak Password Requirements Authentication Bypass Vulnerability. This vulnerability allows remote attackers to bypass authentication on affected installations of MLflow. Authentication is not required to exploit this vulnerability.\n\nThe specific flaw exists within the handling of passwords. The issue results from weak password requirements. An attacker can leverage this vulnerability to bypass authentication on the system. Was ZDI-CAN-26916."
        }
      ],
      "metrics": [
        {
          "cvssV3_0": {
            "baseScore": 8.1,
            "baseSeverity": "HIGH",
            "vectorString": "CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.0"
          },
          "format": "CVSS"
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-521",
              "description": "CWE-521: Weak Password Requirements",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2025-10-29T19:42:03.734Z",
        "orgId": "99f1926a-a320-47d8-bbb5-42feb611262e",
        "shortName": "zdi"
      },
      "references": [
        {
          "name": "ZDI-25-932",
          "tags": [
            "x_research-advisory"
          ],
          "url": "https://www.zerodayinitiative.com/advisories/ZDI-25-932/"
        },
        {
          "name": "vendor-provided URL",
          "tags": [
            "vendor-advisory"
          ],
          "url": "https://github.com/mlflow/mlflow/commit/1f74f3f24d8273927b8db392c23e108576936c54"
        }
      ],
      "source": {
        "lang": "en",
        "value": "Peter Girnus (@gothburz) of Trend Zero Day Initiative"
      },
      "title": "MLflow Weak Password Requirements Authentication Bypass Vulnerability"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "99f1926a-a320-47d8-bbb5-42feb611262e",
    "assignerShortName": "zdi",
    "cveId": "CVE-2025-11200",
    "datePublished": "2025-10-29T19:42:03.734Z",
    "dateReserved": "2025-09-30T20:33:50.599Z",
    "dateUpdated": "2025-10-31T03:55:31.971Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.2"
}

CVE-2025-52967 (GCVE-0-2025-52967)

Vulnerability from nvd – Published: 2025-06-23 00:00 – Updated: 2025-06-23 20:12
VLAI?
Summary
gateway_proxy_handler in MLflow before 3.1.0 lacks gateway_path validation.
CWE
  • CWE-918 - Server-Side Request Forgery (SSRF)
Assigner
Impacted products
Vendor Product Version
lfprojects MLflow Affected: 0 , < 3.1.0 (semver)
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2025-52967",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "yes"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-06-23T20:12:42.837365Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-06-23T20:12:52.209Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "defaultStatus": "unaffected",
          "product": "MLflow",
          "vendor": "lfprojects",
          "versions": [
            {
              "lessThan": "3.1.0",
              "status": "affected",
              "version": "0",
              "versionType": "semver"
            }
          ]
        }
      ],
      "cpeApplicability": [
        {
          "nodes": [
            {
              "cpeMatch": [
                {
                  "criteria": "cpe:2.3:a:lfprojects:mlflow:*:*:*:*:*:*:*:*",
                  "versionEndExcluding": "3.1.0",
                  "vulnerable": true
                }
              ],
              "negate": false,
              "operator": "OR"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "gateway_proxy_handler in MLflow before 3.1.0 lacks gateway_path validation."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "baseScore": 5.8,
            "baseSeverity": "MEDIUM",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:N/I:L/A:N",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-918",
              "description": "CWE-918 Server-Side Request Forgery (SSRF)",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2025-06-23T14:42:53.571Z",
        "orgId": "8254265b-2729-46b6-b9e3-3dfca2d5bfca",
        "shortName": "mitre"
      },
      "references": [
        {
          "url": "https://github.com/mlflow/mlflow/pull/15970"
        },
        {
          "url": "https://github.com/mlflow/mlflow/issues/15944"
        },
        {
          "url": "https://github.com/mlflow/mlflow/releases/tag/v3.1.0"
        }
      ],
      "x_generator": {
        "engine": "enrichogram 0.0.1"
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "8254265b-2729-46b6-b9e3-3dfca2d5bfca",
    "assignerShortName": "mitre",
    "cveId": "CVE-2025-52967",
    "datePublished": "2025-06-23T00:00:00.000Z",
    "dateReserved": "2025-06-23T00:00:00.000Z",
    "dateUpdated": "2025-06-23T20:12:52.209Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2025-1474 (GCVE-0-2025-1474)

Vulnerability from nvd – Published: 2025-03-20 10:10 – Updated: 2025-03-20 18:22
VLAI?
Title
Weak Password Requirements in mlflow/mlflow
Summary
In mlflow/mlflow version 2.18, an admin is able to create a new user account without setting a password. This vulnerability could lead to security risks, as accounts without passwords may be susceptible to unauthorized access. Additionally, this issue violates best practices for secure user account management. The issue is fixed in version 2.19.0.
CWE
  • CWE-521 - Weak Password Requirements
Assigner
Impacted products
Vendor Product Version
mlflow mlflow/mlflow Affected: unspecified , < 2.19.0 (custom)
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2025-1474",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-03-20T17:48:58.057102Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-03-20T18:22:53.386Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "mlflow/mlflow",
          "vendor": "mlflow",
          "versions": [
            {
              "lessThan": "2.19.0",
              "status": "affected",
              "version": "unspecified",
              "versionType": "custom"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "In mlflow/mlflow version 2.18, an admin is able to create a new user account without setting a password. This vulnerability could lead to security risks, as accounts without passwords may be susceptible to unauthorized access. Additionally, this issue violates best practices for secure user account management. The issue is fixed in version 2.19.0."
        }
      ],
      "metrics": [
        {
          "cvssV3_0": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "NONE",
            "baseScore": 3.8,
            "baseSeverity": "LOW",
            "confidentialityImpact": "LOW",
            "integrityImpact": "LOW",
            "privilegesRequired": "HIGH",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.0/AV:N/AC:L/PR:H/UI:N/S:U/C:L/I:L/A:N",
            "version": "3.0"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-521",
              "description": "CWE-521 Weak Password Requirements",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2025-03-20T10:10:20.888Z",
        "orgId": "c09c270a-b464-47c1-9133-acb35b22c19a",
        "shortName": "@huntr_ai"
      },
      "references": [
        {
          "url": "https://huntr.com/bounties/e79f7774-10fe-46b2-b522-e73b748e3b2d"
        },
        {
          "url": "https://github.com/mlflow/mlflow/commit/149c9e18aa219bc47e86b432e130e467a36f4a17"
        }
      ],
      "source": {
        "advisory": "e79f7774-10fe-46b2-b522-e73b748e3b2d",
        "discovery": "EXTERNAL"
      },
      "title": "Weak Password Requirements in mlflow/mlflow"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "c09c270a-b464-47c1-9133-acb35b22c19a",
    "assignerShortName": "@huntr_ai",
    "cveId": "CVE-2025-1474",
    "datePublished": "2025-03-20T10:10:20.888Z",
    "dateReserved": "2025-02-19T16:25:03.658Z",
    "dateUpdated": "2025-03-20T18:22:53.386Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2025-1473 (GCVE-0-2025-1473)

Vulnerability from nvd – Published: 2025-03-20 10:10 – Updated: 2025-03-20 18:22
VLAI?
Title
CSRF in mlflow/mlflow
Summary
A Cross-Site Request Forgery (CSRF) vulnerability exists in the Signup feature of mlflow/mlflow versions 2.17.0 to 2.20.1. This vulnerability allows an attacker to create a new account, which may be used to perform unauthorized actions on behalf of the malicious user.
CWE
  • CWE-352 - Cross-Site Request Forgery (CSRF)
Assigner
Impacted products
Vendor Product Version
mlflow mlflow/mlflow Affected: unspecified , < 2.20.2 (custom)
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2025-1473",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-03-20T17:49:00.977055Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-03-20T18:22:59.873Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "mlflow/mlflow",
          "vendor": "mlflow",
          "versions": [
            {
              "lessThan": "2.20.2",
              "status": "affected",
              "version": "unspecified",
              "versionType": "custom"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "A Cross-Site Request Forgery (CSRF) vulnerability exists in the Signup feature of mlflow/mlflow versions 2.17.0 to 2.20.1. This vulnerability allows an attacker to create a new account, which may be used to perform unauthorized actions on behalf of the malicious user."
        }
      ],
      "metrics": [
        {
          "cvssV3_0": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "NONE",
            "baseScore": 5.4,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "LOW",
            "integrityImpact": "LOW",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "REQUIRED",
            "vectorString": "CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:U/C:L/I:L/A:N",
            "version": "3.0"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-352",
              "description": "CWE-352 Cross-Site Request Forgery (CSRF)",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2025-03-20T10:10:20.747Z",
        "orgId": "c09c270a-b464-47c1-9133-acb35b22c19a",
        "shortName": "@huntr_ai"
      },
      "references": [
        {
          "url": "https://huntr.com/bounties/43dc50b6-7d1e-41b9-9f97-f28809df1d45"
        },
        {
          "url": "https://github.com/mlflow/mlflow/commit/ecfa61cb43d3303589f3b5834fd95991c9706628"
        }
      ],
      "source": {
        "advisory": "43dc50b6-7d1e-41b9-9f97-f28809df1d45",
        "discovery": "EXTERNAL"
      },
      "title": "CSRF in mlflow/mlflow"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "c09c270a-b464-47c1-9133-acb35b22c19a",
    "assignerShortName": "@huntr_ai",
    "cveId": "CVE-2025-1473",
    "datePublished": "2025-03-20T10:10:20.747Z",
    "dateReserved": "2025-02-19T16:21:58.890Z",
    "dateUpdated": "2025-03-20T18:22:59.873Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2025-0453 (GCVE-0-2025-0453)

Vulnerability from nvd – Published: 2025-03-20 10:11 – Updated: 2025-10-15 12:50
VLAI?
Title
Denial of Service through Batched Queries in GraphQL in mlflow/mlflow
Summary
In mlflow/mlflow version 2.17.2, the `/graphql` endpoint is vulnerable to a denial of service attack. An attacker can create large batches of queries that repeatedly request all runs from a given experiment. This can tie up all the workers allocated by MLFlow, rendering the application unable to respond to other requests. This vulnerability is due to uncontrolled resource consumption.
CWE
  • CWE-410 - Insufficient Resource Pool
Assigner
Impacted products
Vendor Product Version
mlflow mlflow/mlflow Affected: unspecified , ≤ latest (custom)
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2025-0453",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-03-20T15:51:13.787242Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-03-20T15:51:25.860Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "references": [
          {
            "tags": [
              "exploit"
            ],
            "url": "https://huntr.com/bounties/788327ec-714a-4d5c-83aa-8df04dd7612b"
          }
        ],
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "mlflow/mlflow",
          "vendor": "mlflow",
          "versions": [
            {
              "lessThanOrEqual": "latest",
              "status": "affected",
              "version": "unspecified",
              "versionType": "custom"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "In mlflow/mlflow version 2.17.2, the `/graphql` endpoint is vulnerable to a denial of service attack. An attacker can create large batches of queries that repeatedly request all runs from a given experiment. This can tie up all the workers allocated by MLFlow, rendering the application unable to respond to other requests. This vulnerability is due to uncontrolled resource consumption."
        }
      ],
      "metrics": [
        {
          "cvssV3_0": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.0"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-410",
              "description": "CWE-410 Insufficient Resource Pool",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2025-10-15T12:50:04.768Z",
        "orgId": "c09c270a-b464-47c1-9133-acb35b22c19a",
        "shortName": "@huntr_ai"
      },
      "references": [
        {
          "url": "https://huntr.com/bounties/788327ec-714a-4d5c-83aa-8df04dd7612b"
        }
      ],
      "source": {
        "advisory": "788327ec-714a-4d5c-83aa-8df04dd7612b",
        "discovery": "EXTERNAL"
      },
      "title": "Denial of Service through Batched Queries in GraphQL in mlflow/mlflow"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "c09c270a-b464-47c1-9133-acb35b22c19a",
    "assignerShortName": "@huntr_ai",
    "cveId": "CVE-2025-0453",
    "datePublished": "2025-03-20T10:11:02.779Z",
    "dateReserved": "2025-01-13T23:25:07.844Z",
    "dateUpdated": "2025-10-15T12:50:04.768Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2024-8859 (GCVE-0-2024-8859)

Vulnerability from nvd – Published: 2025-03-20 10:09 – Updated: 2025-03-20 18:33
VLAI?
Title
Path Traversal in mlflow/mlflow
Summary
A path traversal vulnerability exists in mlflow/mlflow version 2.15.1. When users configure and use the dbfs service, concatenating the URL directly into the file protocol results in an arbitrary file read vulnerability. This issue occurs because only the path part of the URL is checked, while parts such as query and parameters are not handled. The vulnerability is triggered if the user has configured the dbfs service, and during usage, the service is mounted to a local directory.
CWE
  • CWE-29 - Path Traversal: '\..\filename'
Assigner
Impacted products
Vendor Product Version
mlflow mlflow/mlflow Affected: unspecified , < 2.17.0 (custom)
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2024-8859",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "yes"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-03-20T17:52:43.545684Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-03-20T18:33:21.135Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "mlflow/mlflow",
          "vendor": "mlflow",
          "versions": [
            {
              "lessThan": "2.17.0",
              "status": "affected",
              "version": "unspecified",
              "versionType": "custom"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "A path traversal vulnerability exists in mlflow/mlflow version 2.15.1. When users configure and use the dbfs service, concatenating the URL directly into the file protocol results in an arbitrary file read vulnerability. This issue occurs because only the path part of the URL is checked, while parts such as query and parameters are not handled. The vulnerability is triggered if the user has configured the dbfs service, and during usage, the service is mounted to a local directory."
        }
      ],
      "metrics": [
        {
          "cvssV3_0": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "NONE",
            "baseScore": 7.5,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N",
            "version": "3.0"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-29",
              "description": "CWE-29 Path Traversal: \u0027\\..\\filename\u0027",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2025-03-20T10:09:53.459Z",
        "orgId": "c09c270a-b464-47c1-9133-acb35b22c19a",
        "shortName": "@huntr_ai"
      },
      "references": [
        {
          "url": "https://huntr.com/bounties/2259b88b-a0c6-4c7c-b434-6aacf6056dcb"
        },
        {
          "url": "https://github.com/mlflow/mlflow/commit/7791b8cdd595f21b5f179c7b17e4b5eb5cbbe654"
        }
      ],
      "source": {
        "advisory": "2259b88b-a0c6-4c7c-b434-6aacf6056dcb",
        "discovery": "EXTERNAL"
      },
      "title": "Path Traversal in mlflow/mlflow"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "c09c270a-b464-47c1-9133-acb35b22c19a",
    "assignerShortName": "@huntr_ai",
    "cveId": "CVE-2024-8859",
    "datePublished": "2025-03-20T10:09:53.459Z",
    "dateReserved": "2024-09-13T20:12:51.168Z",
    "dateUpdated": "2025-03-20T18:33:21.135Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2024-6838 (GCVE-0-2024-6838)

Vulnerability from nvd – Published: 2025-03-20 10:09 – Updated: 2025-03-20 14:25
VLAI?
Title
Uncontrolled Resource Consumption in mlflow/mlflow
Summary
In mlflow/mlflow version v2.13.2, a vulnerability exists that allows the creation or renaming of an experiment with a large number of integers in its name due to the lack of a limit on the experiment name. This can cause the MLflow UI panel to become unresponsive, leading to a potential denial of service. Additionally, there is no character limit in the `artifact_location` parameter while creating the experiment.
CWE
  • CWE-400 - Uncontrolled Resource Consumption
Assigner
Impacted products
Vendor Product Version
mlflow mlflow/mlflow Affected: unspecified , ≤ latest (custom)
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2024-6838",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "yes"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-03-20T14:25:36.315939Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-03-20T14:25:56.917Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "references": [
          {
            "tags": [
              "exploit"
            ],
            "url": "https://huntr.com/bounties/8ad52cb2-2cda-4eb0-aec9-586060ee43e0"
          }
        ],
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "mlflow/mlflow",
          "vendor": "mlflow",
          "versions": [
            {
              "lessThanOrEqual": "latest",
              "status": "affected",
              "version": "unspecified",
              "versionType": "custom"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "In mlflow/mlflow version v2.13.2, a vulnerability exists that allows the creation or renaming of an experiment with a large number of integers in its name due to the lack of a limit on the experiment name. This can cause the MLflow UI panel to become unresponsive, leading to a potential denial of service. Additionally, there is no character limit in the `artifact_location` parameter while creating the experiment."
        }
      ],
      "metrics": [
        {
          "cvssV3_0": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "LOW",
            "baseScore": 5.3,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.0"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-400",
              "description": "CWE-400 Uncontrolled Resource Consumption",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2025-03-20T10:09:11.431Z",
        "orgId": "c09c270a-b464-47c1-9133-acb35b22c19a",
        "shortName": "@huntr_ai"
      },
      "references": [
        {
          "url": "https://huntr.com/bounties/8ad52cb2-2cda-4eb0-aec9-586060ee43e0"
        }
      ],
      "source": {
        "advisory": "8ad52cb2-2cda-4eb0-aec9-586060ee43e0",
        "discovery": "EXTERNAL"
      },
      "title": "Uncontrolled Resource Consumption in mlflow/mlflow"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "c09c270a-b464-47c1-9133-acb35b22c19a",
    "assignerShortName": "@huntr_ai",
    "cveId": "CVE-2024-6838",
    "datePublished": "2025-03-20T10:09:11.431Z",
    "dateReserved": "2024-07-17T17:37:25.971Z",
    "dateUpdated": "2025-03-20T14:25:56.917Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2024-27134 (GCVE-0-2024-27134)

Vulnerability from nvd – Published: 2024-11-25 13:48 – Updated: 2024-11-25 14:23
VLAI?
Title
Excessive directory permissions in MLflow leads to local privilege escalation when using spark_udf
Summary
Excessive directory permissions in MLflow leads to local privilege escalation when using spark_udf. This behavior can be exploited by a local attacker to gain elevated permissions by using a ToCToU attack. The issue is only relevant when the spark_udf() MLflow API is called.
CWE
  • CWE-367 - Time-of-check Time-of-use (TOCTOU) Race Condition
  • CWE-276 - Incorrect Default Permissions
Assigner
Impacted products
Vendor Product Version
Affected: 0 , < 2.16.0 (python)
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "affected": [
          {
            "cpes": [
              "cpe:2.3:a:lfprojects:mlflow:-:*:*:*:*:*:*:*"
            ],
            "defaultStatus": "unknown",
            "product": "mlflow",
            "vendor": "lfprojects",
            "versions": [
              {
                "lessThan": "2.16.0",
                "status": "affected",
                "version": "0",
                "versionType": "custom"
              }
            ]
          }
        ],
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2024-27134",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "total"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2024-11-25T14:23:17.524784Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2024-11-25T14:23:59.324Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "collectionURL": "https://pypi.python.org",
          "defaultStatus": "unaffected",
          "packageName": "mlflow",
          "versions": [
            {
              "lessThan": "2.16.0",
              "status": "affected",
              "version": "0",
              "versionType": "python"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "supportingMedia": [
            {
              "base64": false,
              "type": "text/html",
              "value": "\u003cp\u003eExcessive directory permissions in MLflow leads to local privilege escalation when using spark_udf. This behavior can be exploited by a local attacker to gain elevated permissions by using a ToCToU attack. The issue is only relevant when the spark_udf() MLflow API is called.\u003c/p\u003e"
            }
          ],
          "value": "Excessive directory permissions in MLflow leads to local privilege escalation when using spark_udf. This behavior can be exploited by a local attacker to gain elevated permissions by using a ToCToU attack. The issue is only relevant when the spark_udf() MLflow API is called."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "REQUIRED",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:N/UI:R/S:U/C:H/I:H/A:H",
            "version": "3.1"
          },
          "format": "CVSS",
          "scenarios": [
            {
              "lang": "en",
              "value": "GENERAL"
            }
          ]
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-367",
              "description": "CWE-367 Time-of-check Time-of-use (TOCTOU) Race Condition",
              "lang": "en",
              "type": "CWE"
            }
          ]
        },
        {
          "descriptions": [
            {
              "cweId": "CWE-276",
              "description": "CWE-276 Incorrect Default Permissions",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2024-11-25T13:48:05.117Z",
        "orgId": "48a46f29-ae42-4e1d-90dd-c1676c1e5e6d",
        "shortName": "JFROG"
      },
      "references": [
        {
          "tags": [
            "patch"
          ],
          "url": "https://github.com/mlflow/mlflow/pull/10874"
        }
      ],
      "source": {
        "discovery": "UNKNOWN"
      },
      "title": "Excessive directory permissions in MLflow leads to local privilege escalation when using spark_udf",
      "x_generator": {
        "engine": "Vulnogram 0.2.0"
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "48a46f29-ae42-4e1d-90dd-c1676c1e5e6d",
    "assignerShortName": "JFROG",
    "cveId": "CVE-2024-27134",
    "datePublished": "2024-11-25T13:48:05.117Z",
    "dateReserved": "2024-02-20T11:10:51.335Z",
    "dateUpdated": "2024-11-25T14:23:59.324Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2024-3099 (GCVE-0-2024-3099)

Vulnerability from nvd – Published: 2024-06-06 18:08 – Updated: 2024-08-01 19:32
VLAI?
Title
Denial of Service and Data Model Poisoning via URL Encoding in mlflow/mlflow
Summary
A vulnerability in mlflow/mlflow version 2.11.1 allows attackers to create multiple models with the same name by exploiting URL encoding. This flaw can lead to Denial of Service (DoS) as an authenticated user might not be able to use the intended model, as it will open a different model each time. Additionally, an attacker can exploit this vulnerability to perform data model poisoning by creating a model with the same name, potentially causing an authenticated user to become a victim by using the poisoned model. The issue stems from inadequate validation of model names, allowing for the creation of models with URL-encoded names that are treated as distinct from their URL-decoded counterparts.
CWE
  • CWE-475 - Undefined Behavior for Input to API
Assigner
Impacted products
Vendor Product Version
mlflow mlflow/mlflow Affected: unspecified , ≤ latest (custom)
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "affected": [
          {
            "cpes": [
              "cpe:2.3:a:lfprojects:mlflow:2.11.1:*:*:*:*:*:*:*"
            ],
            "defaultStatus": "unknown",
            "product": "mlflow",
            "vendor": "lfprojects",
            "versions": [
              {
                "status": "affected",
                "version": "2.11.1"
              }
            ]
          }
        ],
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2024-3099",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2024-06-07T12:51:54.841930Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2024-07-24T17:22:16.990Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      },
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-01T19:32:42.675Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://huntr.com/bounties/8d96374a-ce8d-480e-9cb0-0a7e5165c24a"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "mlflow/mlflow",
          "vendor": "mlflow",
          "versions": [
            {
              "lessThanOrEqual": "latest",
              "status": "affected",
              "version": "unspecified",
              "versionType": "custom"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "A vulnerability in mlflow/mlflow version 2.11.1 allows attackers to create multiple models with the same name by exploiting URL encoding. This flaw can lead to Denial of Service (DoS) as an authenticated user might not be able to use the intended model, as it will open a different model each time. Additionally, an attacker can exploit this vulnerability to perform data model poisoning by creating a model with the same name, potentially causing an authenticated user to become a victim by using the poisoned model. The issue stems from inadequate validation of model names, allowing for the creation of models with URL-encoded names that are treated as distinct from their URL-decoded counterparts."
        }
      ],
      "metrics": [
        {
          "cvssV3_0": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "LOW",
            "baseScore": 5.4,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.0/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:L/A:L",
            "version": "3.0"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-475",
              "description": "CWE-475 Undefined Behavior for Input to API",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2024-06-06T18:08:16.402Z",
        "orgId": "c09c270a-b464-47c1-9133-acb35b22c19a",
        "shortName": "@huntr_ai"
      },
      "references": [
        {
          "url": "https://huntr.com/bounties/8d96374a-ce8d-480e-9cb0-0a7e5165c24a"
        }
      ],
      "source": {
        "advisory": "8d96374a-ce8d-480e-9cb0-0a7e5165c24a",
        "discovery": "EXTERNAL"
      },
      "title": "Denial of Service and Data Model Poisoning via URL Encoding in mlflow/mlflow"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "c09c270a-b464-47c1-9133-acb35b22c19a",
    "assignerShortName": "@huntr_ai",
    "cveId": "CVE-2024-3099",
    "datePublished": "2024-06-06T18:08:16.402Z",
    "dateReserved": "2024-03-29T17:47:14.222Z",
    "dateUpdated": "2024-08-01T19:32:42.675Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2024-2928 (GCVE-0-2024-2928)

Vulnerability from nvd – Published: 2024-06-06 18:29 – Updated: 2024-08-01 19:32
VLAI?
Title
Local File Inclusion (LFI) via URI Fragment Parsing in mlflow/mlflow
Summary
A Local File Inclusion (LFI) vulnerability was identified in mlflow/mlflow, specifically in version 2.9.2, which was fixed in version 2.11.3. This vulnerability arises from the application's failure to properly validate URI fragments for directory traversal sequences such as '../'. An attacker can exploit this flaw by manipulating the fragment part of the URI to read arbitrary files on the local file system, including sensitive files like '/etc/passwd'. The vulnerability is a bypass to a previous patch that only addressed similar manipulation within the URI's query string, highlighting the need for comprehensive validation of all parts of a URI to prevent LFI attacks.
CWE
  • CWE-29 - Path Traversal: '\..\filename'
Assigner
Impacted products
Vendor Product Version
mlflow mlflow/mlflow Affected: unspecified , < 2.11.3 (custom)
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "affected": [
          {
            "cpes": [
              "cpe:2.3:a:lfprojects:mlflow:*:*:*:*:*:*:*:*"
            ],
            "defaultStatus": "unknown",
            "product": "mlflow",
            "vendor": "lfprojects",
            "versions": [
              {
                "lessThan": "2.11.3",
                "status": "affected",
                "version": "0",
                "versionType": "custom"
              }
            ]
          }
        ],
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2024-2928",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "yes"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2024-06-06T19:39:18.635831Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2024-07-24T17:23:22.838Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      },
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-01T19:32:42.225Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://huntr.com/bounties/19bf02d7-6393-4a95-b9d0-d6d4d2d8c298"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/mlflow/mlflow/commit/96f0b573a73d8eedd6735a2ce26e08859527be07"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "mlflow/mlflow",
          "vendor": "mlflow",
          "versions": [
            {
              "lessThan": "2.11.3",
              "status": "affected",
              "version": "unspecified",
              "versionType": "custom"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "A Local File Inclusion (LFI) vulnerability was identified in mlflow/mlflow, specifically in version 2.9.2, which was fixed in version 2.11.3. This vulnerability arises from the application\u0027s failure to properly validate URI fragments for directory traversal sequences such as \u0027../\u0027. An attacker can exploit this flaw by manipulating the fragment part of the URI to read arbitrary files on the local file system, including sensitive files like \u0027/etc/passwd\u0027. The vulnerability is a bypass to a previous patch that only addressed similar manipulation within the URI\u0027s query string, highlighting the need for comprehensive validation of all parts of a URI to prevent LFI attacks."
        }
      ],
      "metrics": [
        {
          "cvssV3_0": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "NONE",
            "baseScore": 7.5,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N",
            "version": "3.0"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-29",
              "description": "CWE-29 Path Traversal: \u0027\\..\\filename\u0027",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2024-06-06T18:29:54.973Z",
        "orgId": "c09c270a-b464-47c1-9133-acb35b22c19a",
        "shortName": "@huntr_ai"
      },
      "references": [
        {
          "url": "https://huntr.com/bounties/19bf02d7-6393-4a95-b9d0-d6d4d2d8c298"
        },
        {
          "url": "https://github.com/mlflow/mlflow/commit/96f0b573a73d8eedd6735a2ce26e08859527be07"
        }
      ],
      "source": {
        "advisory": "19bf02d7-6393-4a95-b9d0-d6d4d2d8c298",
        "discovery": "EXTERNAL"
      },
      "title": "Local File Inclusion (LFI) via URI Fragment Parsing in mlflow/mlflow"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "c09c270a-b464-47c1-9133-acb35b22c19a",
    "assignerShortName": "@huntr_ai",
    "cveId": "CVE-2024-2928",
    "datePublished": "2024-06-06T18:29:54.973Z",
    "dateReserved": "2024-03-26T15:36:14.364Z",
    "dateUpdated": "2024-08-01T19:32:42.225Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2024-0520 (GCVE-0-2024-0520)

Vulnerability from nvd – Published: 2024-06-06 18:19 – Updated: 2025-10-15 12:50
VLAI?
Title
Remote Code Execution due to Full Controlled File Write in mlflow/mlflow
Summary
A vulnerability in mlflow/mlflow version 8.2.1 allows for remote code execution due to improper neutralization of special elements used in an OS command ('Command Injection') within the `mlflow.data.http_dataset_source.py` module. Specifically, when loading a dataset from a source URL with an HTTP scheme, the filename extracted from the `Content-Disposition` header or the URL path is used to generate the final file path without proper sanitization. This flaw enables an attacker to control the file path fully by utilizing path traversal or absolute path techniques, such as '../../tmp/poc.txt' or '/tmp/poc.txt', leading to arbitrary file write. Exploiting this vulnerability could allow a malicious user to execute commands on the vulnerable machine, potentially gaining access to data and model information. The issue is fixed in version 2.9.0.
CWE
  • CWE-22 - Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')
Assigner
Impacted products
Vendor Product Version
mlflow mlflow/mlflow Affected: unspecified , < 2.9.0 (custom)
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2024-0520",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2024-06-06T20:17:45.368019Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2024-06-06T20:17:58.996Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      },
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-01T18:11:35.193Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://huntr.com/bounties/93e470d7-b6f0-409b-af63-49d3e2a26dbc"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/mlflow/mlflow/commit/400c226953b4568f4361bc0a0c223511652c2b9d"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "mlflow/mlflow",
          "vendor": "mlflow",
          "versions": [
            {
              "lessThan": "2.9.0",
              "status": "affected",
              "version": "unspecified",
              "versionType": "custom"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "A vulnerability in mlflow/mlflow version 8.2.1 allows for remote code execution due to improper neutralization of special elements used in an OS command (\u0027Command Injection\u0027) within the `mlflow.data.http_dataset_source.py` module. Specifically, when loading a dataset from a source URL with an HTTP scheme, the filename extracted from the `Content-Disposition` header or the URL path is used to generate the final file path without proper sanitization. This flaw enables an attacker to control the file path fully by utilizing path traversal or absolute path techniques, such as \u0027../../tmp/poc.txt\u0027 or \u0027/tmp/poc.txt\u0027, leading to arbitrary file write. Exploiting this vulnerability could allow a malicious user to execute commands on the vulnerable machine, potentially gaining access to data and model information. The issue is fixed in version 2.9.0."
        }
      ],
      "metrics": [
        {
          "cvssV3_0": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 10,
            "baseSeverity": "CRITICAL",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "NONE",
            "scope": "CHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H",
            "version": "3.0"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-22",
              "description": "CWE-22 Improper Limitation of a Pathname to a Restricted Directory (\u0027Path Traversal\u0027)",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2025-10-15T12:50:06.675Z",
        "orgId": "c09c270a-b464-47c1-9133-acb35b22c19a",
        "shortName": "@huntr_ai"
      },
      "references": [
        {
          "url": "https://huntr.com/bounties/93e470d7-b6f0-409b-af63-49d3e2a26dbc"
        },
        {
          "url": "https://github.com/mlflow/mlflow/commit/400c226953b4568f4361bc0a0c223511652c2b9d"
        }
      ],
      "source": {
        "advisory": "93e470d7-b6f0-409b-af63-49d3e2a26dbc",
        "discovery": "EXTERNAL"
      },
      "title": "Remote Code Execution due to Full Controlled File Write in mlflow/mlflow"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "c09c270a-b464-47c1-9133-acb35b22c19a",
    "assignerShortName": "@huntr_ai",
    "cveId": "CVE-2024-0520",
    "datePublished": "2024-06-06T18:19:36.380Z",
    "dateReserved": "2024-01-14T15:26:16.946Z",
    "dateUpdated": "2025-10-15T12:50:06.675Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2024-37061 (GCVE-0-2024-37061)

Vulnerability from nvd – Published: 2024-06-04 12:02 – Updated: 2024-08-02 03:43
VLAI?
Summary
Remote Code Execution can occur in versions of the MLflow platform running version 1.11.0 or newer, enabling a maliciously crafted MLproject to execute arbitrary code on an end user’s system when run.
CWE
  • CWE-94 - Improper Control of Generation of Code ('Code Injection')
Assigner
Impacted products
Vendor Product Version
MLflow MLflow Affected: 1.11.0 , ≤ * (semver)
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "affected": [
          {
            "cpes": [
              "cpe:2.3:a:lfprojects:mlflow:*:*:*:*:*:*:*:*"
            ],
            "defaultStatus": "unknown",
            "product": "mlflow",
            "vendor": "lfprojects",
            "versions": [
              {
                "lessThanOrEqual": "*",
                "status": "affected",
                "version": "1.11.0",
                "versionType": "semver"
              }
            ]
          }
        ],
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2024-37061",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "total"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2024-07-23T19:19:18.785591Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2024-07-24T19:11:07.022Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      },
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-02T03:43:50.824Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://hiddenlayer.com/sai-security-advisory/mlflow-june2024"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "defaultStatus": "unaffected",
          "packageName": "mlflow",
          "product": "MLflow",
          "repo": "https://github.com/mlflow/mlflow",
          "vendor": "MLflow",
          "versions": [
            {
              "lessThanOrEqual": "*",
              "status": "affected",
              "version": "1.11.0",
              "versionType": "semver"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "supportingMedia": [
            {
              "base64": false,
              "type": "text/html",
              "value": "\u003cspan style=\"background-color: rgb(255, 255, 255);\"\u003eRemote Code Execution can occur in versions of the MLflow platform running version 1.11.0 or newer, enabling a maliciously crafted MLproject to execute arbitrary code on an end user\u2019s system when run.\u003c/span\u003e\u003cbr\u003e"
            }
          ],
          "value": "Remote Code Execution can occur in versions of the MLflow platform running version 1.11.0 or newer, enabling a maliciously crafted MLproject to execute arbitrary code on an end user\u2019s system when run."
        }
      ],
      "impacts": [
        {
          "capecId": "CAPEC-35",
          "descriptions": [
            {
              "lang": "en",
              "value": "CAPEC-35 Leverage Executable Code in Non-Executable Files"
            }
          ]
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 8.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "REQUIRED",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H",
            "version": "3.1"
          },
          "format": "CVSS",
          "scenarios": [
            {
              "lang": "en",
              "value": "GENERAL"
            }
          ]
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-94",
              "description": "CWE-94 Improper Control of Generation of Code (\u0027Code Injection\u0027)",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2024-06-04T12:02:23.269Z",
        "orgId": "6f8de1f0-f67e-45a6-b68f-98777fdb759c",
        "shortName": "HiddenLayer"
      },
      "references": [
        {
          "url": "https://hiddenlayer.com/sai-security-advisory/mlflow-june2024"
        }
      ],
      "source": {
        "discovery": "UNKNOWN"
      },
      "x_generator": {
        "engine": "Vulnogram 0.2.0"
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "6f8de1f0-f67e-45a6-b68f-98777fdb759c",
    "assignerShortName": "HiddenLayer",
    "cveId": "CVE-2024-37061",
    "datePublished": "2024-06-04T12:02:23.269Z",
    "dateReserved": "2024-05-31T14:16:48.808Z",
    "dateUpdated": "2024-08-02T03:43:50.824Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2024-37060 (GCVE-0-2024-37060)

Vulnerability from nvd – Published: 2024-06-04 12:02 – Updated: 2024-08-02 03:43
VLAI?
Summary
Deserialization of untrusted data can occur in versions of the MLflow platform running version 1.27.0 or newer, enabling a maliciously crafted Recipe to execute arbitrary code on an end user’s system when run.
CWE
  • CWE-502 - Deserialization of Untrusted Data
Assigner
Impacted products
Vendor Product Version
MLflow MLflow Affected: 1.27.0 , ≤ * (semver)
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "affected": [
          {
            "cpes": [
              "cpe:2.3:a:lfprojects:mlflow:1.27.0:*:*:*:*:*:*:*"
            ],
            "defaultStatus": "unknown",
            "product": "mlflow",
            "vendor": "lfprojects",
            "versions": [
              {
                "lessThanOrEqual": "*",
                "status": "affected",
                "version": "1.27.0",
                "versionType": "semver"
              }
            ]
          }
        ],
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2024-37060",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "total"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2024-06-04T14:54:08.816308Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2024-07-24T17:18:21.637Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      },
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-02T03:43:50.968Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://hiddenlayer.com/sai-security-advisory/mlflow-june2024"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "defaultStatus": "unaffected",
          "packageName": "mlflow",
          "product": "MLflow",
          "repo": "https://github.com/mlflow/mlflow",
          "vendor": "MLflow",
          "versions": [
            {
              "lessThanOrEqual": "*",
              "status": "affected",
              "version": "1.27.0",
              "versionType": "semver"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "supportingMedia": [
            {
              "base64": false,
              "type": "text/html",
              "value": "\u003cspan style=\"background-color: rgb(255, 255, 255);\"\u003eDeserialization of untrusted data can occur in versions of the MLflow platform running version 1.27.0 or newer, enabling a maliciously crafted Recipe to execute arbitrary code on an end user\u2019s system when run.\u003c/span\u003e\u003cbr\u003e"
            }
          ],
          "value": "Deserialization of untrusted data can occur in versions of the MLflow platform running version 1.27.0 or newer, enabling a maliciously crafted Recipe to execute arbitrary code on an end user\u2019s system when run."
        }
      ],
      "impacts": [
        {
          "capecId": "CAPEC-586",
          "descriptions": [
            {
              "lang": "en",
              "value": "CAPEC-586 Object Injection"
            }
          ]
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 8.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "REQUIRED",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H",
            "version": "3.1"
          },
          "format": "CVSS",
          "scenarios": [
            {
              "lang": "en",
              "value": "GENERAL"
            }
          ]
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-502",
              "description": "CWE-502 Deserialization of Untrusted Data",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2024-06-04T12:02:12.858Z",
        "orgId": "6f8de1f0-f67e-45a6-b68f-98777fdb759c",
        "shortName": "HiddenLayer"
      },
      "references": [
        {
          "url": "https://hiddenlayer.com/sai-security-advisory/mlflow-june2024"
        }
      ],
      "source": {
        "discovery": "UNKNOWN"
      },
      "x_generator": {
        "engine": "Vulnogram 0.2.0"
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "6f8de1f0-f67e-45a6-b68f-98777fdb759c",
    "assignerShortName": "HiddenLayer",
    "cveId": "CVE-2024-37060",
    "datePublished": "2024-06-04T12:02:12.858Z",
    "dateReserved": "2024-05-31T14:16:48.808Z",
    "dateUpdated": "2024-08-02T03:43:50.968Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2024-37059 (GCVE-0-2024-37059)

Vulnerability from nvd – Published: 2024-06-04 12:01 – Updated: 2024-08-02 03:43
VLAI?
Summary
Deserialization of untrusted data can occur in versions of the MLflow platform running version 0.5.0 or newer, enabling a maliciously uploaded PyTorch model to run arbitrary code on an end user’s system when interacted with.
CWE
  • CWE-502 - Deserialization of Untrusted Data
Assigner
Impacted products
Vendor Product Version
MLflow MLflow Affected: 0.5.0 , ≤ * (semver)
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "affected": [
          {
            "cpes": [
              "cpe:2.3:a:mlflow:mlflow:-:*:*:*:*:*:*:*"
            ],
            "defaultStatus": "unknown",
            "product": "mlflow",
            "vendor": "mlflow",
            "versions": [
              {
                "lessThanOrEqual": "*",
                "status": "affected",
                "version": "0.5.0",
                "versionType": "custom"
              }
            ]
          }
        ],
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2024-37059",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "total"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2024-06-06T14:55:38.397370Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2024-07-24T17:24:46.370Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      },
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-02T03:43:50.934Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://hiddenlayer.com/sai-security-advisory/mlflow-june2024"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "defaultStatus": "unaffected",
          "packageName": "mlflow",
          "product": "MLflow",
          "repo": "https://github.com/mlflow/mlflow",
          "vendor": "MLflow",
          "versions": [
            {
              "lessThanOrEqual": "*",
              "status": "affected",
              "version": "0.5.0",
              "versionType": "semver"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "supportingMedia": [
            {
              "base64": false,
              "type": "text/html",
              "value": "\u003cspan style=\"background-color: rgb(255, 255, 255);\"\u003eDeserialization of untrusted data can occur in versions of the MLflow platform running version 0.5.0 or newer, enabling a maliciously uploaded PyTorch model to run arbitrary code on an end user\u2019s system when interacted with.\u003c/span\u003e\u003cbr\u003e"
            }
          ],
          "value": "Deserialization of untrusted data can occur in versions of the MLflow platform running version 0.5.0 or newer, enabling a maliciously uploaded PyTorch model to run arbitrary code on an end user\u2019s system when interacted with."
        }
      ],
      "impacts": [
        {
          "capecId": "CAPEC-586",
          "descriptions": [
            {
              "lang": "en",
              "value": "CAPEC-586 Object Injection"
            }
          ]
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 8.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "REQUIRED",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H",
            "version": "3.1"
          },
          "format": "CVSS",
          "scenarios": [
            {
              "lang": "en",
              "value": "GENERAL"
            }
          ]
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-502",
              "description": "CWE-502 Deserialization of Untrusted Data",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2024-06-04T12:01:58.728Z",
        "orgId": "6f8de1f0-f67e-45a6-b68f-98777fdb759c",
        "shortName": "HiddenLayer"
      },
      "references": [
        {
          "url": "https://hiddenlayer.com/sai-security-advisory/mlflow-june2024"
        }
      ],
      "source": {
        "discovery": "UNKNOWN"
      },
      "x_generator": {
        "engine": "Vulnogram 0.2.0"
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "6f8de1f0-f67e-45a6-b68f-98777fdb759c",
    "assignerShortName": "HiddenLayer",
    "cveId": "CVE-2024-37059",
    "datePublished": "2024-06-04T12:01:58.728Z",
    "dateReserved": "2024-05-31T14:16:48.807Z",
    "dateUpdated": "2024-08-02T03:43:50.934Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2024-37058 (GCVE-0-2024-37058)

Vulnerability from nvd – Published: 2024-06-04 12:01 – Updated: 2024-08-02 03:43
VLAI?
Summary
Deserialization of untrusted data can occur in versions of the MLflow platform running version 2.5.0 or newer, enabling a maliciously uploaded Langchain AgentExecutor model to run arbitrary code on an end user’s system when interacted with.
CWE
  • CWE-502 - Deserialization of Untrusted Data
Assigner
Impacted products
Vendor Product Version
MLflow MLflow Affected: 2.5.0 , ≤ * (semver)
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "affected": [
          {
            "cpes": [
              "cpe:2.3:a:lfprojects:mlflow:2.5.0:*:*:*:*:*:*:*"
            ],
            "defaultStatus": "affected",
            "product": "mlflow",
            "vendor": "lfprojects",
            "versions": [
              {
                "status": "affected",
                "version": "2.5.0"
              }
            ]
          }
        ],
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2024-37058",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "total"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2024-06-04T14:36:18.866926Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2024-06-04T17:46:15.505Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      },
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-02T03:43:50.989Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://hiddenlayer.com/sai-security-advisory/mlflow-june2024"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "defaultStatus": "unaffected",
          "packageName": "mlflow",
          "product": "MLflow",
          "repo": "https://github.com/mlflow/mlflow",
          "vendor": "MLflow",
          "versions": [
            {
              "lessThanOrEqual": "*",
              "status": "affected",
              "version": "2.5.0",
              "versionType": "semver"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "supportingMedia": [
            {
              "base64": false,
              "type": "text/html",
              "value": "\u003cspan style=\"background-color: rgb(255, 255, 255);\"\u003eDeserialization of untrusted data can occur in versions of the MLflow platform running version 2.5.0 or newer, enabling a maliciously uploaded Langchain AgentExecutor model to run arbitrary code on an end user\u2019s system when interacted with.\u003c/span\u003e\u003cbr\u003e"
            }
          ],
          "value": "Deserialization of untrusted data can occur in versions of the MLflow platform running version 2.5.0 or newer, enabling a maliciously uploaded Langchain AgentExecutor model to run arbitrary code on an end user\u2019s system when interacted with."
        }
      ],
      "impacts": [
        {
          "capecId": "CAPEC-586",
          "descriptions": [
            {
              "lang": "en",
              "value": "CAPEC-586 Object Injection"
            }
          ]
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 8.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "REQUIRED",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H",
            "version": "3.1"
          },
          "format": "CVSS",
          "scenarios": [
            {
              "lang": "en",
              "value": "GENERAL"
            }
          ]
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-502",
              "description": "CWE-502 Deserialization of Untrusted Data",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2024-06-04T12:01:43.266Z",
        "orgId": "6f8de1f0-f67e-45a6-b68f-98777fdb759c",
        "shortName": "HiddenLayer"
      },
      "references": [
        {
          "url": "https://hiddenlayer.com/sai-security-advisory/mlflow-june2024"
        }
      ],
      "source": {
        "discovery": "UNKNOWN"
      },
      "x_generator": {
        "engine": "Vulnogram 0.2.0"
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "6f8de1f0-f67e-45a6-b68f-98777fdb759c",
    "assignerShortName": "HiddenLayer",
    "cveId": "CVE-2024-37058",
    "datePublished": "2024-06-04T12:01:43.266Z",
    "dateReserved": "2024-05-31T14:16:48.807Z",
    "dateUpdated": "2024-08-02T03:43:50.989Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2024-37057 (GCVE-0-2024-37057)

Vulnerability from nvd – Published: 2024-06-04 12:01 – Updated: 2024-08-02 03:43
VLAI?
Summary
Deserialization of untrusted data can occur in versions of the MLflow platform running version 2.0.0rc0 or newer, enabling a maliciously uploaded Tensorflow model to run arbitrary code on an end user’s system when interacted with.
CWE
  • CWE-502 - Deserialization of Untrusted Data
Assigner
Impacted products
Vendor Product Version
MLflow MLflow Affected: 2.0.0rc0 , ≤ * (semver)
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "affected": [
          {
            "cpes": [
              "cpe:2.3:a:lfprojects:mlflow:*:*:*:*:*:*:*:*"
            ],
            "defaultStatus": "unknown",
            "product": "mlflow",
            "vendor": "lfprojects",
            "versions": [
              {
                "lessThanOrEqual": "*",
                "status": "affected",
                "version": "2.0.0rc0",
                "versionType": "semver"
              }
            ]
          }
        ],
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2024-37057",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "total"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2024-07-19T13:52:51.455258Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2024-07-19T20:58:50.263Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      },
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-02T03:43:51.015Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://hiddenlayer.com/sai-security-advisory/mlflow-june2024"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "defaultStatus": "unaffected",
          "packageName": "mlflow",
          "product": "MLflow",
          "repo": "https://github.com/mlflow/mlflow",
          "vendor": "MLflow",
          "versions": [
            {
              "lessThanOrEqual": "*",
              "status": "affected",
              "version": "2.0.0rc0",
              "versionType": "semver"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "supportingMedia": [
            {
              "base64": false,
              "type": "text/html",
              "value": "\u003cspan style=\"background-color: rgb(255, 255, 255);\"\u003eDeserialization of untrusted data can occur in versions of the MLflow platform running version 2.0.0rc0 or newer, enabling a maliciously uploaded Tensorflow model to run arbitrary code on an end user\u2019s system when interacted with.\u003c/span\u003e\u003cbr\u003e"
            }
          ],
          "value": "Deserialization of untrusted data can occur in versions of the MLflow platform running version 2.0.0rc0 or newer, enabling a maliciously uploaded Tensorflow model to run arbitrary code on an end user\u2019s system when interacted with."
        }
      ],
      "impacts": [
        {
          "capecId": "CAPEC-586",
          "descriptions": [
            {
              "lang": "en",
              "value": "CAPEC-586 Object Injection"
            }
          ]
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 8.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "REQUIRED",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H",
            "version": "3.1"
          },
          "format": "CVSS",
          "scenarios": [
            {
              "lang": "en",
              "value": "GENERAL"
            }
          ]
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-502",
              "description": "CWE-502 Deserialization of Untrusted Data",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2024-06-04T12:01:28.229Z",
        "orgId": "6f8de1f0-f67e-45a6-b68f-98777fdb759c",
        "shortName": "HiddenLayer"
      },
      "references": [
        {
          "url": "https://hiddenlayer.com/sai-security-advisory/mlflow-june2024"
        }
      ],
      "source": {
        "discovery": "UNKNOWN"
      },
      "x_generator": {
        "engine": "Vulnogram 0.2.0"
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "6f8de1f0-f67e-45a6-b68f-98777fdb759c",
    "assignerShortName": "HiddenLayer",
    "cveId": "CVE-2024-37057",
    "datePublished": "2024-06-04T12:01:28.229Z",
    "dateReserved": "2024-05-31T14:16:48.807Z",
    "dateUpdated": "2024-08-02T03:43:51.015Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2024-37056 (GCVE-0-2024-37056)

Vulnerability from nvd – Published: 2024-06-04 12:01 – Updated: 2024-08-02 03:43
VLAI?
Summary
Deserialization of untrusted data can occur in versions of the MLflow platform running version 1.23.0 or newer, enabling a maliciously uploaded LightGBM scikit-learn model to run arbitrary code on an end user’s system when interacted with.
CWE
  • CWE-502 - Deserialization of Untrusted Data
Assigner
Impacted products
Vendor Product Version
MLflow MLflow Affected: 1.23.0 , ≤ * (semver)
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "affected": [
          {
            "cpes": [
              "cpe:2.3:a:lfprojects:mlflow:1.23.0:*:*:*:*:*:*:*"
            ],
            "defaultStatus": "unknown",
            "product": "mlflow",
            "vendor": "lfprojects",
            "versions": [
              {
                "lessThan": "*",
                "status": "affected",
                "version": "1.23.0",
                "versionType": "custom"
              }
            ]
          }
        ],
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2024-37056",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "total"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2024-06-04T14:50:12.232949Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2024-07-24T17:05:55.580Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      },
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-02T03:43:50.908Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://hiddenlayer.com/sai-security-advisory/mlflow-june2024"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "defaultStatus": "unaffected",
          "packageName": "mlflow",
          "product": "MLflow",
          "repo": "https://github.com/mlflow/mlflow",
          "vendor": "MLflow",
          "versions": [
            {
              "lessThanOrEqual": "*",
              "status": "affected",
              "version": "1.23.0",
              "versionType": "semver"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "supportingMedia": [
            {
              "base64": false,
              "type": "text/html",
              "value": "\u003cspan style=\"background-color: rgb(255, 255, 255);\"\u003eDeserialization of untrusted data can occur in versions of the MLflow platform running version 1.23.0 or newer, enabling a maliciously uploaded LightGBM scikit-learn model to run arbitrary code on an end user\u2019s system when interacted with.\u003c/span\u003e\u003cbr\u003e"
            }
          ],
          "value": "Deserialization of untrusted data can occur in versions of the MLflow platform running version 1.23.0 or newer, enabling a maliciously uploaded LightGBM scikit-learn model to run arbitrary code on an end user\u2019s system when interacted with."
        }
      ],
      "impacts": [
        {
          "capecId": "CAPEC-586",
          "descriptions": [
            {
              "lang": "en",
              "value": "CAPEC-586 Object Injection"
            }
          ]
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 8.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "REQUIRED",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H",
            "version": "3.1"
          },
          "format": "CVSS",
          "scenarios": [
            {
              "lang": "en",
              "value": "GENERAL"
            }
          ]
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-502",
              "description": "CWE-502 Deserialization of Untrusted Data",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2024-06-04T12:01:09.258Z",
        "orgId": "6f8de1f0-f67e-45a6-b68f-98777fdb759c",
        "shortName": "HiddenLayer"
      },
      "references": [
        {
          "url": "https://hiddenlayer.com/sai-security-advisory/mlflow-june2024"
        }
      ],
      "source": {
        "discovery": "UNKNOWN"
      },
      "x_generator": {
        "engine": "Vulnogram 0.2.0"
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "6f8de1f0-f67e-45a6-b68f-98777fdb759c",
    "assignerShortName": "HiddenLayer",
    "cveId": "CVE-2024-37056",
    "datePublished": "2024-06-04T12:01:09.258Z",
    "dateReserved": "2024-05-31T14:16:48.807Z",
    "dateUpdated": "2024-08-02T03:43:50.908Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2025-11200 (GCVE-0-2025-11200)

Vulnerability from cvelistv5 – Published: 2025-10-29 19:42 – Updated: 2025-10-31 03:55
VLAI?
Title
MLflow Weak Password Requirements Authentication Bypass Vulnerability
Summary
MLflow Weak Password Requirements Authentication Bypass Vulnerability. This vulnerability allows remote attackers to bypass authentication on affected installations of MLflow. Authentication is not required to exploit this vulnerability. The specific flaw exists within the handling of passwords. The issue results from weak password requirements. An attacker can leverage this vulnerability to bypass authentication on the system. Was ZDI-CAN-26916.
CWE
  • CWE-521 - Weak Password Requirements
Assigner
zdi
Impacted products
Vendor Product Version
MLflow MLflow Affected: 2.21.0
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2025-11200",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "total"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-10-30T00:00:00+00:00",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-10-31T03:55:31.971Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "defaultStatus": "unknown",
          "product": "MLflow",
          "vendor": "MLflow",
          "versions": [
            {
              "status": "affected",
              "version": "2.21.0"
            }
          ]
        }
      ],
      "dateAssigned": "2025-09-30T20:33:50.659Z",
      "datePublic": "2025-10-03T23:27:16.937Z",
      "descriptions": [
        {
          "lang": "en",
          "value": "MLflow Weak Password Requirements Authentication Bypass Vulnerability. This vulnerability allows remote attackers to bypass authentication on affected installations of MLflow. Authentication is not required to exploit this vulnerability.\n\nThe specific flaw exists within the handling of passwords. The issue results from weak password requirements. An attacker can leverage this vulnerability to bypass authentication on the system. Was ZDI-CAN-26916."
        }
      ],
      "metrics": [
        {
          "cvssV3_0": {
            "baseScore": 8.1,
            "baseSeverity": "HIGH",
            "vectorString": "CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.0"
          },
          "format": "CVSS"
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-521",
              "description": "CWE-521: Weak Password Requirements",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2025-10-29T19:42:03.734Z",
        "orgId": "99f1926a-a320-47d8-bbb5-42feb611262e",
        "shortName": "zdi"
      },
      "references": [
        {
          "name": "ZDI-25-932",
          "tags": [
            "x_research-advisory"
          ],
          "url": "https://www.zerodayinitiative.com/advisories/ZDI-25-932/"
        },
        {
          "name": "vendor-provided URL",
          "tags": [
            "vendor-advisory"
          ],
          "url": "https://github.com/mlflow/mlflow/commit/1f74f3f24d8273927b8db392c23e108576936c54"
        }
      ],
      "source": {
        "lang": "en",
        "value": "Peter Girnus (@gothburz) of Trend Zero Day Initiative"
      },
      "title": "MLflow Weak Password Requirements Authentication Bypass Vulnerability"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "99f1926a-a320-47d8-bbb5-42feb611262e",
    "assignerShortName": "zdi",
    "cveId": "CVE-2025-11200",
    "datePublished": "2025-10-29T19:42:03.734Z",
    "dateReserved": "2025-09-30T20:33:50.599Z",
    "dateUpdated": "2025-10-31T03:55:31.971Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.2"
}

CVE-2025-11201 (GCVE-0-2025-11201)

Vulnerability from cvelistv5 – Published: 2025-10-29 19:37 – Updated: 2025-10-31 03:55
VLAI?
Title
MLflow Tracking Server Model Creation Directory Traversal Remote Code Execution Vulnerability
Summary
MLflow Tracking Server Model Creation Directory Traversal Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of MLflow Tracking Server. Authentication is not required to exploit this vulnerability. The specific flaw exists within the handling of model file paths. The issue results from the lack of proper validation of a user-supplied path prior to using it in file operations. An attacker can leverage this vulnerability to execute code in the context of the service account. Was ZDI-CAN-26921.
CWE
  • CWE-22 - Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')
Assigner
zdi
Impacted products
Vendor Product Version
MLflow MLflow Affected: 2.21.3
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2025-11201",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "total"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-10-30T00:00:00+00:00",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-10-31T03:55:31.166Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "defaultStatus": "unknown",
          "product": "MLflow",
          "vendor": "MLflow",
          "versions": [
            {
              "status": "affected",
              "version": "2.21.3"
            }
          ]
        }
      ],
      "dateAssigned": "2025-09-30T20:34:16.612Z",
      "datePublic": "2025-10-03T23:25:23.863Z",
      "descriptions": [
        {
          "lang": "en",
          "value": "MLflow Tracking Server Model Creation Directory Traversal Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of MLflow Tracking Server. Authentication is not required to exploit this vulnerability.\n\nThe specific flaw exists within the handling of model file paths. The issue results from the lack of proper validation of a user-supplied path prior to using it in file operations. An attacker can leverage this vulnerability to execute code in the context of the service account. Was ZDI-CAN-26921."
        }
      ],
      "metrics": [
        {
          "cvssV3_0": {
            "baseScore": 8.1,
            "baseSeverity": "HIGH",
            "vectorString": "CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.0"
          },
          "format": "CVSS"
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-22",
              "description": "CWE-22: Improper Limitation of a Pathname to a Restricted Directory (\u0027Path Traversal\u0027)",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2025-10-29T19:37:10.690Z",
        "orgId": "99f1926a-a320-47d8-bbb5-42feb611262e",
        "shortName": "zdi"
      },
      "references": [
        {
          "name": "ZDI-25-931",
          "tags": [
            "x_research-advisory"
          ],
          "url": "https://www.zerodayinitiative.com/advisories/ZDI-25-931/"
        },
        {
          "name": "vendor-provided URL",
          "tags": [
            "vendor-advisory"
          ],
          "url": "https://github.com/B-Step62/mlflow/commit/2e02bc7bb70df243e6eb792689d9b8eba0013161"
        }
      ],
      "source": {
        "lang": "en",
        "value": "Mas Fadilullah dzaki"
      },
      "title": "MLflow Tracking Server Model Creation Directory Traversal Remote Code Execution Vulnerability"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "99f1926a-a320-47d8-bbb5-42feb611262e",
    "assignerShortName": "zdi",
    "cveId": "CVE-2025-11201",
    "datePublished": "2025-10-29T19:37:10.690Z",
    "dateReserved": "2025-09-30T20:34:16.557Z",
    "dateUpdated": "2025-10-31T03:55:31.166Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.2"
}

CVE-2025-52967 (GCVE-0-2025-52967)

Vulnerability from cvelistv5 – Published: 2025-06-23 00:00 – Updated: 2025-06-23 20:12
VLAI?
Summary
gateway_proxy_handler in MLflow before 3.1.0 lacks gateway_path validation.
CWE
  • CWE-918 - Server-Side Request Forgery (SSRF)
Assigner
Impacted products
Vendor Product Version
lfprojects MLflow Affected: 0 , < 3.1.0 (semver)
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2025-52967",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "yes"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-06-23T20:12:42.837365Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-06-23T20:12:52.209Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "defaultStatus": "unaffected",
          "product": "MLflow",
          "vendor": "lfprojects",
          "versions": [
            {
              "lessThan": "3.1.0",
              "status": "affected",
              "version": "0",
              "versionType": "semver"
            }
          ]
        }
      ],
      "cpeApplicability": [
        {
          "nodes": [
            {
              "cpeMatch": [
                {
                  "criteria": "cpe:2.3:a:lfprojects:mlflow:*:*:*:*:*:*:*:*",
                  "versionEndExcluding": "3.1.0",
                  "vulnerable": true
                }
              ],
              "negate": false,
              "operator": "OR"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "gateway_proxy_handler in MLflow before 3.1.0 lacks gateway_path validation."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "baseScore": 5.8,
            "baseSeverity": "MEDIUM",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:N/I:L/A:N",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-918",
              "description": "CWE-918 Server-Side Request Forgery (SSRF)",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2025-06-23T14:42:53.571Z",
        "orgId": "8254265b-2729-46b6-b9e3-3dfca2d5bfca",
        "shortName": "mitre"
      },
      "references": [
        {
          "url": "https://github.com/mlflow/mlflow/pull/15970"
        },
        {
          "url": "https://github.com/mlflow/mlflow/issues/15944"
        },
        {
          "url": "https://github.com/mlflow/mlflow/releases/tag/v3.1.0"
        }
      ],
      "x_generator": {
        "engine": "enrichogram 0.0.1"
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "8254265b-2729-46b6-b9e3-3dfca2d5bfca",
    "assignerShortName": "mitre",
    "cveId": "CVE-2025-52967",
    "datePublished": "2025-06-23T00:00:00.000Z",
    "dateReserved": "2025-06-23T00:00:00.000Z",
    "dateUpdated": "2025-06-23T20:12:52.209Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2025-0453 (GCVE-0-2025-0453)

Vulnerability from cvelistv5 – Published: 2025-03-20 10:11 – Updated: 2025-10-15 12:50
VLAI?
Title
Denial of Service through Batched Queries in GraphQL in mlflow/mlflow
Summary
In mlflow/mlflow version 2.17.2, the `/graphql` endpoint is vulnerable to a denial of service attack. An attacker can create large batches of queries that repeatedly request all runs from a given experiment. This can tie up all the workers allocated by MLFlow, rendering the application unable to respond to other requests. This vulnerability is due to uncontrolled resource consumption.
CWE
  • CWE-410 - Insufficient Resource Pool
Assigner
Impacted products
Vendor Product Version
mlflow mlflow/mlflow Affected: unspecified , ≤ latest (custom)
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2025-0453",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-03-20T15:51:13.787242Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-03-20T15:51:25.860Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "references": [
          {
            "tags": [
              "exploit"
            ],
            "url": "https://huntr.com/bounties/788327ec-714a-4d5c-83aa-8df04dd7612b"
          }
        ],
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "mlflow/mlflow",
          "vendor": "mlflow",
          "versions": [
            {
              "lessThanOrEqual": "latest",
              "status": "affected",
              "version": "unspecified",
              "versionType": "custom"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "In mlflow/mlflow version 2.17.2, the `/graphql` endpoint is vulnerable to a denial of service attack. An attacker can create large batches of queries that repeatedly request all runs from a given experiment. This can tie up all the workers allocated by MLFlow, rendering the application unable to respond to other requests. This vulnerability is due to uncontrolled resource consumption."
        }
      ],
      "metrics": [
        {
          "cvssV3_0": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.0"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-410",
              "description": "CWE-410 Insufficient Resource Pool",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2025-10-15T12:50:04.768Z",
        "orgId": "c09c270a-b464-47c1-9133-acb35b22c19a",
        "shortName": "@huntr_ai"
      },
      "references": [
        {
          "url": "https://huntr.com/bounties/788327ec-714a-4d5c-83aa-8df04dd7612b"
        }
      ],
      "source": {
        "advisory": "788327ec-714a-4d5c-83aa-8df04dd7612b",
        "discovery": "EXTERNAL"
      },
      "title": "Denial of Service through Batched Queries in GraphQL in mlflow/mlflow"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "c09c270a-b464-47c1-9133-acb35b22c19a",
    "assignerShortName": "@huntr_ai",
    "cveId": "CVE-2025-0453",
    "datePublished": "2025-03-20T10:11:02.779Z",
    "dateReserved": "2025-01-13T23:25:07.844Z",
    "dateUpdated": "2025-10-15T12:50:04.768Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2025-1474 (GCVE-0-2025-1474)

Vulnerability from cvelistv5 – Published: 2025-03-20 10:10 – Updated: 2025-03-20 18:22
VLAI?
Title
Weak Password Requirements in mlflow/mlflow
Summary
In mlflow/mlflow version 2.18, an admin is able to create a new user account without setting a password. This vulnerability could lead to security risks, as accounts without passwords may be susceptible to unauthorized access. Additionally, this issue violates best practices for secure user account management. The issue is fixed in version 2.19.0.
CWE
  • CWE-521 - Weak Password Requirements
Assigner
Impacted products
Vendor Product Version
mlflow mlflow/mlflow Affected: unspecified , < 2.19.0 (custom)
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2025-1474",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-03-20T17:48:58.057102Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-03-20T18:22:53.386Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "mlflow/mlflow",
          "vendor": "mlflow",
          "versions": [
            {
              "lessThan": "2.19.0",
              "status": "affected",
              "version": "unspecified",
              "versionType": "custom"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "In mlflow/mlflow version 2.18, an admin is able to create a new user account without setting a password. This vulnerability could lead to security risks, as accounts without passwords may be susceptible to unauthorized access. Additionally, this issue violates best practices for secure user account management. The issue is fixed in version 2.19.0."
        }
      ],
      "metrics": [
        {
          "cvssV3_0": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "NONE",
            "baseScore": 3.8,
            "baseSeverity": "LOW",
            "confidentialityImpact": "LOW",
            "integrityImpact": "LOW",
            "privilegesRequired": "HIGH",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.0/AV:N/AC:L/PR:H/UI:N/S:U/C:L/I:L/A:N",
            "version": "3.0"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-521",
              "description": "CWE-521 Weak Password Requirements",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2025-03-20T10:10:20.888Z",
        "orgId": "c09c270a-b464-47c1-9133-acb35b22c19a",
        "shortName": "@huntr_ai"
      },
      "references": [
        {
          "url": "https://huntr.com/bounties/e79f7774-10fe-46b2-b522-e73b748e3b2d"
        },
        {
          "url": "https://github.com/mlflow/mlflow/commit/149c9e18aa219bc47e86b432e130e467a36f4a17"
        }
      ],
      "source": {
        "advisory": "e79f7774-10fe-46b2-b522-e73b748e3b2d",
        "discovery": "EXTERNAL"
      },
      "title": "Weak Password Requirements in mlflow/mlflow"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "c09c270a-b464-47c1-9133-acb35b22c19a",
    "assignerShortName": "@huntr_ai",
    "cveId": "CVE-2025-1474",
    "datePublished": "2025-03-20T10:10:20.888Z",
    "dateReserved": "2025-02-19T16:25:03.658Z",
    "dateUpdated": "2025-03-20T18:22:53.386Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2025-1473 (GCVE-0-2025-1473)

Vulnerability from cvelistv5 – Published: 2025-03-20 10:10 – Updated: 2025-03-20 18:22
VLAI?
Title
CSRF in mlflow/mlflow
Summary
A Cross-Site Request Forgery (CSRF) vulnerability exists in the Signup feature of mlflow/mlflow versions 2.17.0 to 2.20.1. This vulnerability allows an attacker to create a new account, which may be used to perform unauthorized actions on behalf of the malicious user.
CWE
  • CWE-352 - Cross-Site Request Forgery (CSRF)
Assigner
Impacted products
Vendor Product Version
mlflow mlflow/mlflow Affected: unspecified , < 2.20.2 (custom)
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2025-1473",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-03-20T17:49:00.977055Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-03-20T18:22:59.873Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "mlflow/mlflow",
          "vendor": "mlflow",
          "versions": [
            {
              "lessThan": "2.20.2",
              "status": "affected",
              "version": "unspecified",
              "versionType": "custom"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "A Cross-Site Request Forgery (CSRF) vulnerability exists in the Signup feature of mlflow/mlflow versions 2.17.0 to 2.20.1. This vulnerability allows an attacker to create a new account, which may be used to perform unauthorized actions on behalf of the malicious user."
        }
      ],
      "metrics": [
        {
          "cvssV3_0": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "NONE",
            "baseScore": 5.4,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "LOW",
            "integrityImpact": "LOW",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "REQUIRED",
            "vectorString": "CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:U/C:L/I:L/A:N",
            "version": "3.0"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-352",
              "description": "CWE-352 Cross-Site Request Forgery (CSRF)",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2025-03-20T10:10:20.747Z",
        "orgId": "c09c270a-b464-47c1-9133-acb35b22c19a",
        "shortName": "@huntr_ai"
      },
      "references": [
        {
          "url": "https://huntr.com/bounties/43dc50b6-7d1e-41b9-9f97-f28809df1d45"
        },
        {
          "url": "https://github.com/mlflow/mlflow/commit/ecfa61cb43d3303589f3b5834fd95991c9706628"
        }
      ],
      "source": {
        "advisory": "43dc50b6-7d1e-41b9-9f97-f28809df1d45",
        "discovery": "EXTERNAL"
      },
      "title": "CSRF in mlflow/mlflow"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "c09c270a-b464-47c1-9133-acb35b22c19a",
    "assignerShortName": "@huntr_ai",
    "cveId": "CVE-2025-1473",
    "datePublished": "2025-03-20T10:10:20.747Z",
    "dateReserved": "2025-02-19T16:21:58.890Z",
    "dateUpdated": "2025-03-20T18:22:59.873Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2024-8859 (GCVE-0-2024-8859)

Vulnerability from cvelistv5 – Published: 2025-03-20 10:09 – Updated: 2025-03-20 18:33
VLAI?
Title
Path Traversal in mlflow/mlflow
Summary
A path traversal vulnerability exists in mlflow/mlflow version 2.15.1. When users configure and use the dbfs service, concatenating the URL directly into the file protocol results in an arbitrary file read vulnerability. This issue occurs because only the path part of the URL is checked, while parts such as query and parameters are not handled. The vulnerability is triggered if the user has configured the dbfs service, and during usage, the service is mounted to a local directory.
CWE
  • CWE-29 - Path Traversal: '\..\filename'
Assigner
Impacted products
Vendor Product Version
mlflow mlflow/mlflow Affected: unspecified , < 2.17.0 (custom)
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2024-8859",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "yes"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-03-20T17:52:43.545684Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-03-20T18:33:21.135Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "mlflow/mlflow",
          "vendor": "mlflow",
          "versions": [
            {
              "lessThan": "2.17.0",
              "status": "affected",
              "version": "unspecified",
              "versionType": "custom"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "A path traversal vulnerability exists in mlflow/mlflow version 2.15.1. When users configure and use the dbfs service, concatenating the URL directly into the file protocol results in an arbitrary file read vulnerability. This issue occurs because only the path part of the URL is checked, while parts such as query and parameters are not handled. The vulnerability is triggered if the user has configured the dbfs service, and during usage, the service is mounted to a local directory."
        }
      ],
      "metrics": [
        {
          "cvssV3_0": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "NONE",
            "baseScore": 7.5,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N",
            "version": "3.0"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-29",
              "description": "CWE-29 Path Traversal: \u0027\\..\\filename\u0027",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2025-03-20T10:09:53.459Z",
        "orgId": "c09c270a-b464-47c1-9133-acb35b22c19a",
        "shortName": "@huntr_ai"
      },
      "references": [
        {
          "url": "https://huntr.com/bounties/2259b88b-a0c6-4c7c-b434-6aacf6056dcb"
        },
        {
          "url": "https://github.com/mlflow/mlflow/commit/7791b8cdd595f21b5f179c7b17e4b5eb5cbbe654"
        }
      ],
      "source": {
        "advisory": "2259b88b-a0c6-4c7c-b434-6aacf6056dcb",
        "discovery": "EXTERNAL"
      },
      "title": "Path Traversal in mlflow/mlflow"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "c09c270a-b464-47c1-9133-acb35b22c19a",
    "assignerShortName": "@huntr_ai",
    "cveId": "CVE-2024-8859",
    "datePublished": "2025-03-20T10:09:53.459Z",
    "dateReserved": "2024-09-13T20:12:51.168Z",
    "dateUpdated": "2025-03-20T18:33:21.135Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2024-6838 (GCVE-0-2024-6838)

Vulnerability from cvelistv5 – Published: 2025-03-20 10:09 – Updated: 2025-03-20 14:25
VLAI?
Title
Uncontrolled Resource Consumption in mlflow/mlflow
Summary
In mlflow/mlflow version v2.13.2, a vulnerability exists that allows the creation or renaming of an experiment with a large number of integers in its name due to the lack of a limit on the experiment name. This can cause the MLflow UI panel to become unresponsive, leading to a potential denial of service. Additionally, there is no character limit in the `artifact_location` parameter while creating the experiment.
CWE
  • CWE-400 - Uncontrolled Resource Consumption
Assigner
Impacted products
Vendor Product Version
mlflow mlflow/mlflow Affected: unspecified , ≤ latest (custom)
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2024-6838",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "yes"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-03-20T14:25:36.315939Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-03-20T14:25:56.917Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "references": [
          {
            "tags": [
              "exploit"
            ],
            "url": "https://huntr.com/bounties/8ad52cb2-2cda-4eb0-aec9-586060ee43e0"
          }
        ],
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "mlflow/mlflow",
          "vendor": "mlflow",
          "versions": [
            {
              "lessThanOrEqual": "latest",
              "status": "affected",
              "version": "unspecified",
              "versionType": "custom"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "In mlflow/mlflow version v2.13.2, a vulnerability exists that allows the creation or renaming of an experiment with a large number of integers in its name due to the lack of a limit on the experiment name. This can cause the MLflow UI panel to become unresponsive, leading to a potential denial of service. Additionally, there is no character limit in the `artifact_location` parameter while creating the experiment."
        }
      ],
      "metrics": [
        {
          "cvssV3_0": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "LOW",
            "baseScore": 5.3,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.0"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-400",
              "description": "CWE-400 Uncontrolled Resource Consumption",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2025-03-20T10:09:11.431Z",
        "orgId": "c09c270a-b464-47c1-9133-acb35b22c19a",
        "shortName": "@huntr_ai"
      },
      "references": [
        {
          "url": "https://huntr.com/bounties/8ad52cb2-2cda-4eb0-aec9-586060ee43e0"
        }
      ],
      "source": {
        "advisory": "8ad52cb2-2cda-4eb0-aec9-586060ee43e0",
        "discovery": "EXTERNAL"
      },
      "title": "Uncontrolled Resource Consumption in mlflow/mlflow"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "c09c270a-b464-47c1-9133-acb35b22c19a",
    "assignerShortName": "@huntr_ai",
    "cveId": "CVE-2024-6838",
    "datePublished": "2025-03-20T10:09:11.431Z",
    "dateReserved": "2024-07-17T17:37:25.971Z",
    "dateUpdated": "2025-03-20T14:25:56.917Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2024-27134 (GCVE-0-2024-27134)

Vulnerability from cvelistv5 – Published: 2024-11-25 13:48 – Updated: 2024-11-25 14:23
VLAI?
Title
Excessive directory permissions in MLflow leads to local privilege escalation when using spark_udf
Summary
Excessive directory permissions in MLflow leads to local privilege escalation when using spark_udf. This behavior can be exploited by a local attacker to gain elevated permissions by using a ToCToU attack. The issue is only relevant when the spark_udf() MLflow API is called.
CWE
  • CWE-367 - Time-of-check Time-of-use (TOCTOU) Race Condition
  • CWE-276 - Incorrect Default Permissions
Assigner
Impacted products
Vendor Product Version
Affected: 0 , < 2.16.0 (python)
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "affected": [
          {
            "cpes": [
              "cpe:2.3:a:lfprojects:mlflow:-:*:*:*:*:*:*:*"
            ],
            "defaultStatus": "unknown",
            "product": "mlflow",
            "vendor": "lfprojects",
            "versions": [
              {
                "lessThan": "2.16.0",
                "status": "affected",
                "version": "0",
                "versionType": "custom"
              }
            ]
          }
        ],
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2024-27134",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "total"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2024-11-25T14:23:17.524784Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2024-11-25T14:23:59.324Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "collectionURL": "https://pypi.python.org",
          "defaultStatus": "unaffected",
          "packageName": "mlflow",
          "versions": [
            {
              "lessThan": "2.16.0",
              "status": "affected",
              "version": "0",
              "versionType": "python"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "supportingMedia": [
            {
              "base64": false,
              "type": "text/html",
              "value": "\u003cp\u003eExcessive directory permissions in MLflow leads to local privilege escalation when using spark_udf. This behavior can be exploited by a local attacker to gain elevated permissions by using a ToCToU attack. The issue is only relevant when the spark_udf() MLflow API is called.\u003c/p\u003e"
            }
          ],
          "value": "Excessive directory permissions in MLflow leads to local privilege escalation when using spark_udf. This behavior can be exploited by a local attacker to gain elevated permissions by using a ToCToU attack. The issue is only relevant when the spark_udf() MLflow API is called."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "REQUIRED",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:N/UI:R/S:U/C:H/I:H/A:H",
            "version": "3.1"
          },
          "format": "CVSS",
          "scenarios": [
            {
              "lang": "en",
              "value": "GENERAL"
            }
          ]
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-367",
              "description": "CWE-367 Time-of-check Time-of-use (TOCTOU) Race Condition",
              "lang": "en",
              "type": "CWE"
            }
          ]
        },
        {
          "descriptions": [
            {
              "cweId": "CWE-276",
              "description": "CWE-276 Incorrect Default Permissions",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2024-11-25T13:48:05.117Z",
        "orgId": "48a46f29-ae42-4e1d-90dd-c1676c1e5e6d",
        "shortName": "JFROG"
      },
      "references": [
        {
          "tags": [
            "patch"
          ],
          "url": "https://github.com/mlflow/mlflow/pull/10874"
        }
      ],
      "source": {
        "discovery": "UNKNOWN"
      },
      "title": "Excessive directory permissions in MLflow leads to local privilege escalation when using spark_udf",
      "x_generator": {
        "engine": "Vulnogram 0.2.0"
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "48a46f29-ae42-4e1d-90dd-c1676c1e5e6d",
    "assignerShortName": "JFROG",
    "cveId": "CVE-2024-27134",
    "datePublished": "2024-11-25T13:48:05.117Z",
    "dateReserved": "2024-02-20T11:10:51.335Z",
    "dateUpdated": "2024-11-25T14:23:59.324Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2024-2928 (GCVE-0-2024-2928)

Vulnerability from cvelistv5 – Published: 2024-06-06 18:29 – Updated: 2024-08-01 19:32
VLAI?
Title
Local File Inclusion (LFI) via URI Fragment Parsing in mlflow/mlflow
Summary
A Local File Inclusion (LFI) vulnerability was identified in mlflow/mlflow, specifically in version 2.9.2, which was fixed in version 2.11.3. This vulnerability arises from the application's failure to properly validate URI fragments for directory traversal sequences such as '../'. An attacker can exploit this flaw by manipulating the fragment part of the URI to read arbitrary files on the local file system, including sensitive files like '/etc/passwd'. The vulnerability is a bypass to a previous patch that only addressed similar manipulation within the URI's query string, highlighting the need for comprehensive validation of all parts of a URI to prevent LFI attacks.
CWE
  • CWE-29 - Path Traversal: '\..\filename'
Assigner
Impacted products
Vendor Product Version
mlflow mlflow/mlflow Affected: unspecified , < 2.11.3 (custom)
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "affected": [
          {
            "cpes": [
              "cpe:2.3:a:lfprojects:mlflow:*:*:*:*:*:*:*:*"
            ],
            "defaultStatus": "unknown",
            "product": "mlflow",
            "vendor": "lfprojects",
            "versions": [
              {
                "lessThan": "2.11.3",
                "status": "affected",
                "version": "0",
                "versionType": "custom"
              }
            ]
          }
        ],
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2024-2928",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "yes"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2024-06-06T19:39:18.635831Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2024-07-24T17:23:22.838Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      },
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-01T19:32:42.225Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://huntr.com/bounties/19bf02d7-6393-4a95-b9d0-d6d4d2d8c298"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/mlflow/mlflow/commit/96f0b573a73d8eedd6735a2ce26e08859527be07"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "mlflow/mlflow",
          "vendor": "mlflow",
          "versions": [
            {
              "lessThan": "2.11.3",
              "status": "affected",
              "version": "unspecified",
              "versionType": "custom"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "A Local File Inclusion (LFI) vulnerability was identified in mlflow/mlflow, specifically in version 2.9.2, which was fixed in version 2.11.3. This vulnerability arises from the application\u0027s failure to properly validate URI fragments for directory traversal sequences such as \u0027../\u0027. An attacker can exploit this flaw by manipulating the fragment part of the URI to read arbitrary files on the local file system, including sensitive files like \u0027/etc/passwd\u0027. The vulnerability is a bypass to a previous patch that only addressed similar manipulation within the URI\u0027s query string, highlighting the need for comprehensive validation of all parts of a URI to prevent LFI attacks."
        }
      ],
      "metrics": [
        {
          "cvssV3_0": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "NONE",
            "baseScore": 7.5,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N",
            "version": "3.0"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-29",
              "description": "CWE-29 Path Traversal: \u0027\\..\\filename\u0027",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2024-06-06T18:29:54.973Z",
        "orgId": "c09c270a-b464-47c1-9133-acb35b22c19a",
        "shortName": "@huntr_ai"
      },
      "references": [
        {
          "url": "https://huntr.com/bounties/19bf02d7-6393-4a95-b9d0-d6d4d2d8c298"
        },
        {
          "url": "https://github.com/mlflow/mlflow/commit/96f0b573a73d8eedd6735a2ce26e08859527be07"
        }
      ],
      "source": {
        "advisory": "19bf02d7-6393-4a95-b9d0-d6d4d2d8c298",
        "discovery": "EXTERNAL"
      },
      "title": "Local File Inclusion (LFI) via URI Fragment Parsing in mlflow/mlflow"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "c09c270a-b464-47c1-9133-acb35b22c19a",
    "assignerShortName": "@huntr_ai",
    "cveId": "CVE-2024-2928",
    "datePublished": "2024-06-06T18:29:54.973Z",
    "dateReserved": "2024-03-26T15:36:14.364Z",
    "dateUpdated": "2024-08-01T19:32:42.225Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2024-0520 (GCVE-0-2024-0520)

Vulnerability from cvelistv5 – Published: 2024-06-06 18:19 – Updated: 2025-10-15 12:50
VLAI?
Title
Remote Code Execution due to Full Controlled File Write in mlflow/mlflow
Summary
A vulnerability in mlflow/mlflow version 8.2.1 allows for remote code execution due to improper neutralization of special elements used in an OS command ('Command Injection') within the `mlflow.data.http_dataset_source.py` module. Specifically, when loading a dataset from a source URL with an HTTP scheme, the filename extracted from the `Content-Disposition` header or the URL path is used to generate the final file path without proper sanitization. This flaw enables an attacker to control the file path fully by utilizing path traversal or absolute path techniques, such as '../../tmp/poc.txt' or '/tmp/poc.txt', leading to arbitrary file write. Exploiting this vulnerability could allow a malicious user to execute commands on the vulnerable machine, potentially gaining access to data and model information. The issue is fixed in version 2.9.0.
CWE
  • CWE-22 - Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')
Assigner
Impacted products
Vendor Product Version
mlflow mlflow/mlflow Affected: unspecified , < 2.9.0 (custom)
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2024-0520",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2024-06-06T20:17:45.368019Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2024-06-06T20:17:58.996Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      },
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-01T18:11:35.193Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://huntr.com/bounties/93e470d7-b6f0-409b-af63-49d3e2a26dbc"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/mlflow/mlflow/commit/400c226953b4568f4361bc0a0c223511652c2b9d"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "mlflow/mlflow",
          "vendor": "mlflow",
          "versions": [
            {
              "lessThan": "2.9.0",
              "status": "affected",
              "version": "unspecified",
              "versionType": "custom"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "A vulnerability in mlflow/mlflow version 8.2.1 allows for remote code execution due to improper neutralization of special elements used in an OS command (\u0027Command Injection\u0027) within the `mlflow.data.http_dataset_source.py` module. Specifically, when loading a dataset from a source URL with an HTTP scheme, the filename extracted from the `Content-Disposition` header or the URL path is used to generate the final file path without proper sanitization. This flaw enables an attacker to control the file path fully by utilizing path traversal or absolute path techniques, such as \u0027../../tmp/poc.txt\u0027 or \u0027/tmp/poc.txt\u0027, leading to arbitrary file write. Exploiting this vulnerability could allow a malicious user to execute commands on the vulnerable machine, potentially gaining access to data and model information. The issue is fixed in version 2.9.0."
        }
      ],
      "metrics": [
        {
          "cvssV3_0": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 10,
            "baseSeverity": "CRITICAL",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "NONE",
            "scope": "CHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H",
            "version": "3.0"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-22",
              "description": "CWE-22 Improper Limitation of a Pathname to a Restricted Directory (\u0027Path Traversal\u0027)",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2025-10-15T12:50:06.675Z",
        "orgId": "c09c270a-b464-47c1-9133-acb35b22c19a",
        "shortName": "@huntr_ai"
      },
      "references": [
        {
          "url": "https://huntr.com/bounties/93e470d7-b6f0-409b-af63-49d3e2a26dbc"
        },
        {
          "url": "https://github.com/mlflow/mlflow/commit/400c226953b4568f4361bc0a0c223511652c2b9d"
        }
      ],
      "source": {
        "advisory": "93e470d7-b6f0-409b-af63-49d3e2a26dbc",
        "discovery": "EXTERNAL"
      },
      "title": "Remote Code Execution due to Full Controlled File Write in mlflow/mlflow"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "c09c270a-b464-47c1-9133-acb35b22c19a",
    "assignerShortName": "@huntr_ai",
    "cveId": "CVE-2024-0520",
    "datePublished": "2024-06-06T18:19:36.380Z",
    "dateReserved": "2024-01-14T15:26:16.946Z",
    "dateUpdated": "2025-10-15T12:50:06.675Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2024-3099 (GCVE-0-2024-3099)

Vulnerability from cvelistv5 – Published: 2024-06-06 18:08 – Updated: 2024-08-01 19:32
VLAI?
Title
Denial of Service and Data Model Poisoning via URL Encoding in mlflow/mlflow
Summary
A vulnerability in mlflow/mlflow version 2.11.1 allows attackers to create multiple models with the same name by exploiting URL encoding. This flaw can lead to Denial of Service (DoS) as an authenticated user might not be able to use the intended model, as it will open a different model each time. Additionally, an attacker can exploit this vulnerability to perform data model poisoning by creating a model with the same name, potentially causing an authenticated user to become a victim by using the poisoned model. The issue stems from inadequate validation of model names, allowing for the creation of models with URL-encoded names that are treated as distinct from their URL-decoded counterparts.
CWE
  • CWE-475 - Undefined Behavior for Input to API
Assigner
Impacted products
Vendor Product Version
mlflow mlflow/mlflow Affected: unspecified , ≤ latest (custom)
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "affected": [
          {
            "cpes": [
              "cpe:2.3:a:lfprojects:mlflow:2.11.1:*:*:*:*:*:*:*"
            ],
            "defaultStatus": "unknown",
            "product": "mlflow",
            "vendor": "lfprojects",
            "versions": [
              {
                "status": "affected",
                "version": "2.11.1"
              }
            ]
          }
        ],
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2024-3099",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2024-06-07T12:51:54.841930Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2024-07-24T17:22:16.990Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      },
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-01T19:32:42.675Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://huntr.com/bounties/8d96374a-ce8d-480e-9cb0-0a7e5165c24a"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "mlflow/mlflow",
          "vendor": "mlflow",
          "versions": [
            {
              "lessThanOrEqual": "latest",
              "status": "affected",
              "version": "unspecified",
              "versionType": "custom"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "A vulnerability in mlflow/mlflow version 2.11.1 allows attackers to create multiple models with the same name by exploiting URL encoding. This flaw can lead to Denial of Service (DoS) as an authenticated user might not be able to use the intended model, as it will open a different model each time. Additionally, an attacker can exploit this vulnerability to perform data model poisoning by creating a model with the same name, potentially causing an authenticated user to become a victim by using the poisoned model. The issue stems from inadequate validation of model names, allowing for the creation of models with URL-encoded names that are treated as distinct from their URL-decoded counterparts."
        }
      ],
      "metrics": [
        {
          "cvssV3_0": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "LOW",
            "baseScore": 5.4,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.0/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:L/A:L",
            "version": "3.0"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-475",
              "description": "CWE-475 Undefined Behavior for Input to API",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2024-06-06T18:08:16.402Z",
        "orgId": "c09c270a-b464-47c1-9133-acb35b22c19a",
        "shortName": "@huntr_ai"
      },
      "references": [
        {
          "url": "https://huntr.com/bounties/8d96374a-ce8d-480e-9cb0-0a7e5165c24a"
        }
      ],
      "source": {
        "advisory": "8d96374a-ce8d-480e-9cb0-0a7e5165c24a",
        "discovery": "EXTERNAL"
      },
      "title": "Denial of Service and Data Model Poisoning via URL Encoding in mlflow/mlflow"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "c09c270a-b464-47c1-9133-acb35b22c19a",
    "assignerShortName": "@huntr_ai",
    "cveId": "CVE-2024-3099",
    "datePublished": "2024-06-06T18:08:16.402Z",
    "dateReserved": "2024-03-29T17:47:14.222Z",
    "dateUpdated": "2024-08-01T19:32:42.675Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}